Andreotti Amedeo, Caiazzo Bianca, Fridman Emilia, Petrillo Alberto, Santini Stefania
IEEE Trans Cybern. 2024 Jul;54(7):3890-3903. doi: 10.1109/TCYB.2024.3364820. Epub 2024 Jul 11.
This article tackles secondary voltage recovery problem in islanded microgrids with the aim of reducing communication frequency among distributed generation (DG) units, while maintaining desired performance and saving communication network workload. To pursue this objective, a distributed proportional-integral-derivative controller is first introduced, whose sampled-data implementation is enabled by leveraging the finite-difference approximation for the derivative action, which leads to a distributed proportional-integral-retarded (PIR) controller with a small enough sampling period . Then, the resulting fully distributed PIR control law is combined with a dynamic event-triggered mechanism (DETM), which embeds Zeno-freeness property and avoids the requirement of continuous transmission in triggering process. Thus, the communication burden is significantly mitigated and the waste of communication resources is avoided. By exploiting Lyapunov-Krasovkii method, we derive exponential stability conditions expressed as linear matrix inequalities (LMIs), whose solution allows evaluating the maximum sampling period and DETM parameters preserving the stability of the microgrid. A thorough numerical analysis, carried out on the standard IEEE 14-bus test system, confirms the theoretical derivation.
本文研究孤岛微电网中的二次电压恢复问题,目的是减少分布式发电(DG)单元之间的通信频率,同时保持期望的性能并减轻通信网络工作量。为实现这一目标,首先引入了一种分布式比例积分微分控制器,通过利用导数作用的有限差分近似来实现其采样数据实现,这导致了具有足够小采样周期的分布式比例积分滞后(PIR)控制器。然后,将所得的全分布式PIR控制律与动态事件触发机制(DETM)相结合,该机制具有无芝诺特性,避免了触发过程中连续传输的要求。因此,显著减轻了通信负担,避免了通信资源的浪费。通过利用李雅普诺夫-克拉索夫斯基方法,我们推导了以线性矩阵不等式(LMI)表示的指数稳定性条件,其解允许评估保持微电网稳定性的最大采样周期和DETM参数。在标准IEEE 14母线测试系统上进行的全面数值分析证实了理论推导。