School of Life Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, P. R. China.
Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China.
Adv Healthc Mater. 2024 Jun;13(14):e2303671. doi: 10.1002/adhm.202303671. Epub 2024 Mar 8.
Intracellular bacteria are the major cause of serious infections including sepsis and peritonitis, but face great challenges in fighting against the stubborn intracellular small colony variants (SCVs). Herein, the authors have developed nanogels (NGs) to destroy both planktonic bacteria and SCVs and eliminate excessive inflammations for peritonitis and sepsis therapies. Free gentamicin (GEN) and hydroxyapatite nanoparticles (NPs) with GEN loading and mannose grafts (mHA) are inoculated into ε-polylysine NGs to obtain NG@G1-mHA through crosslinking with phenylboronic acid and tannic acid. The HO consumption after reaction with phenylboronic esters and the elimination of free radicals by tannic acid alleviates the escalated inflammatory status to promote sepsis therapy. After mannose-mediated uptake into macrophages, the acid-triggered degradation of mHA NPs generates Ca to destabilize lysosomes and the efficient lysosomal escape leads to reversion of hypometabolic SCVs into normal phenotype and their sensitivity to GEN. In a peritonitis mouse model, NG@G1-mHA treatment provides strong and persistent bactericidal effects against both extracellular bacteria and intracellular SCVs and extends survival of peritonitis mice without apparent hepatomegaly, splenomegaly, pulmonary edema, and inflammatory cell infiltration. Thus, this study demonstrates a concise and versatile strategy to eliminate SCVs and relieve inflammatory storms for peritonitis and sepsis therapies without infection recurrence.
细胞内细菌是导致严重感染(包括败血症和腹膜炎)的主要原因,但在对抗顽强的细胞内小菌落变异体(SCVs)方面面临巨大挑战。在此,作者开发了纳米凝胶(NGs)来破坏浮游菌和 SCVs,并消除过多的炎症,以用于腹膜炎和败血症的治疗。游离庆大霉素(GEN)和负载 GEN 的羟基磷灰石纳米颗粒(NPs)以及甘露糖接枝(mHA)通过与苯硼酸和鞣酸交联而被接种到 ε-聚赖氨酸 NGs 中,以通过苯硼酸酯与 HO 的消耗和鞣酸的自由基清除反应获得 NG@G1-mHA。减轻炎症状态以促进败血症治疗。在被甘露糖介导摄取进入巨噬细胞后,mHA NPs 的酸触发降解产生 Ca 以破坏溶酶体,并且有效的溶酶体逃逸导致代谢低下的 SCVs 逆转回正常表型,并且对 GEN 敏感。在腹膜炎小鼠模型中,NG@G1-mHA 治疗对细胞外细菌和细胞内 SCVs 均具有强大且持久的杀菌作用,并延长了腹膜炎小鼠的存活时间,而没有明显的肝肿大、脾肿大、肺水肿和炎症细胞浸润。因此,这项研究展示了一种简洁而通用的策略,可用于消除 SCVs 并缓解腹膜炎和败血症治疗中的炎症风暴,而不会引起感染复发。