Suppr超能文献

新型FYN激酶抑制剂的计算发现:一种用于靶向癌症和神经退行性疾病治疗的化学信息学和机器学习驱动方法

Computational discovery of novel FYN kinase inhibitors: a cheminformatics and machine learning-driven approach to targeted cancer and neurodegenerative therapy.

作者信息

Gopal Dhanushya, Muthuraj Rajesh, Balaya Rex Devasahayam Arokia, Kanekar Saptami, Ahmed Iqrar, Chandrasekaran Jaikanth

机构信息

Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, 600116, India.

Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, Karnataka, India.

出版信息

Mol Divers. 2024 Dec;28(6):4343-4359. doi: 10.1007/s11030-024-10819-7. Epub 2024 Feb 28.

Abstract

In this study, we explored the potential of novel inhibitors for FYN kinase, a critical target in cancer and neurodegenerative disorders, by integrating advanced cheminformatics, machine learning, and molecular simulation techniques. Our approach involved analyzing key interactions for FYN inhibition using established multi-kinase inhibitors such as Staurosporine, Dasatinib, and Saracatinib. We utilized ECFP4 circular fingerprints and the t-SNE machine learning algorithm to compare molecular similarities between FDA-approved drugs and known clinical trial inhibitors. This led to the identification of potential inhibitors, including Afatinib, Copanlisib, and Vandetanib. Using the DrugSpaceX platform, we generated a vast library of 72,196 analogues from these leads, which after careful refinement, resulted in 6008 promising candidates. Subsequent clustering identified 48 analogues with significant similarity to known inhibitors. Notably, two candidates derived from Vandetanib, DE27123047 and DE27123035, exhibited strong docking affinities and stable binding in molecular dynamics simulations. These candidates showed high potential as effective FYN kinase inhibitors, as evidenced by MMGBSA calculations and MCE-18 scores exceeding 50. Additionally, our exploration into their molecular architecture revealed potential modification sites on the quinazolin-4-amine scaffold, suggesting opportunities for strategic alterations to enhance activity and optimize ADME properties. Our research is a pioneering effort in drug discovery, unveiling novel candidates for FYN inhibition and demonstrating the efficacy of a multi-layered computational strategy. The molecular insights gained provide a pathway for strategic refinements and future experimental validations, setting a new direction in targeted drug development against diseases involving FYN kinase.

摘要

在本研究中,我们通过整合先进的化学信息学、机器学习和分子模拟技术,探索了新型FYN激酶抑制剂的潜力,FYN激酶是癌症和神经退行性疾病中的关键靶点。我们的方法包括使用已有的多激酶抑制剂(如星形孢菌素、达沙替尼和萨拉卡替尼)分析FYN抑制的关键相互作用。我们利用ECFP4圆形指纹和t-SNE机器学习算法比较FDA批准的药物与已知临床试验抑制剂之间的分子相似性。这导致了潜在抑制剂的鉴定,包括阿法替尼、库潘尼西和凡德他尼。使用DrugSpaceX平台,我们从这些先导化合物中生成了一个包含72196个类似物的庞大库,经过仔细优化,得到了6008个有前景的候选物。随后的聚类鉴定出48个与已知抑制剂具有显著相似性的类似物。值得注意的是,两个源自凡德他尼的候选物DE27123047和DE27123035在分子动力学模拟中表现出很强的对接亲和力和稳定的结合。这些候选物显示出作为有效FYN激酶抑制剂的高潜力,MMGBSA计算和MCE-18分数超过50证明了这一点。此外,我们对其分子结构的探索揭示了喹唑啉-4-胺支架上的潜在修饰位点,这为进行战略性改变以增强活性和优化ADME性质提供了机会。我们的研究是药物发现方面的一项开创性工作,揭示了新型FYN抑制候选物,并证明了多层计算策略的有效性。获得的分子见解为战略优化和未来的实验验证提供了一条途径,为针对涉及FYN激酶的疾病的靶向药物开发设定了新方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验