Qu Ying, Zhuang Liang, Bao Wuren, Li Chunlin, Chen Hongyu, He Shan, Yao Hui, Si Quanjin
College of Nursing, Inner Mongolia Minzu University Tongliao Inner Mongolia 028000 China.
Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University 11 Fucheng Road, Haidian District Beijing 100048 P. R. China
RSC Adv. 2024 Feb 28;14(10):7157-7171. doi: 10.1039/d3ra08431k. eCollection 2024 Feb 21.
Constructing a synergistic multiple-modal antibacterial platform for multi-drug-resistant (MDR) bacterial eradication and effective treatment of infected wounds remains an important and challenging goal. Herein, we developed a multifunctional Cu/Mn dual single-atom nanozyme (Cu/Mn-DSAzymes)-based synergistic mild photothermal/nanocatalytic-therapy for a MDR bacterium-infected wound. Cu/Mn-DSAzymes with collaborative effects exhibit remarkable dual CAT-like and OXD-like enzyme activities and could efficiently catalyze cascade enzymatic reactions with a low level of HO as an initial reactant to produce reparative O and lethal ˙O. Moreover, a black N-doped carbon nanosheet supports of Cu/Mn-DSAzymes show superior NIR-II-triggered photothermal performance, endowing them with photothermal-enhanced dual enzyme catalysis. In addition, such enhanced dual enzyme catalysis likely improves the susceptibility and lethality of photothermal effects on MDR bacteria. and studies demonstrate that Cu/Mn-DSAzyme-mediated synergistic nanocatalytic and photothermal effects possess dramatic antibacterial outcomes against MDR bacteria and evidently reduced inflammation at wound sites. Moreover, the combined photothermal effect and O release mediated by Cu/Mn-DSAzymes promotes macrophage polarization to reparative M2 phenotype, collagen deposition, and angiogenesis, considerably accelerating wound healing. Therefore, Cu/Mn-DSAzyme-based synergetic dual-modal antibacterial therapy is a promising strategy for MDR bacterium-infected wound treatment, owing to their excellent antibacterial ability and significant tissue remodeling effects.
构建一个协同多模态抗菌平台,用于根除多重耐药(MDR)细菌并有效治疗感染伤口,仍然是一个重要且具有挑战性的目标。在此,我们开发了一种基于多功能铜/锰双单原子纳米酶(Cu/Mn-DSAzymes)的协同温和光热/纳米催化疗法,用于治疗多重耐药菌感染的伤口。具有协同效应的Cu/Mn-DSAzymes表现出显著的双过氧化氢酶(CAT)样和氧化酶(OXD)样酶活性,并且可以以低水平的过氧化氢(HO)作为初始反应物,有效催化级联酶促反应,以产生修复性的氧(O)和致死性的超氧阴离子(˙O)。此外,Cu/Mn-DSAzymes的黑色氮掺杂碳纳米片载体表现出优异的近红外二区(NIR-II)触发光热性能,赋予它们光热增强的双酶催化作用。此外,这种增强的双酶催化作用可能会提高光热效应对多重耐药菌的敏感性和致死性。体外和体内研究表明,Cu/Mn-DSAzyme介导的协同纳米催化和光热效应具有针对多重耐药菌的显著抗菌效果,并能明显减轻伤口部位的炎症。此外,由Cu/Mn-DSAzymes介导的光热效应和氧释放促进巨噬细胞极化为修复性M2表型、胶原蛋白沉积和血管生成,大大加速伤口愈合。因此,基于Cu/Mn-DSAzyme的协同双模态抗菌疗法是一种有前途的治疗多重耐药菌感染伤口的策略,这得益于它们出色的抗菌能力和显著的组织重塑效果。
Acta Biomater. 2023-4-15
Mater Today Bio. 2025-5-14
J Nanobiotechnology. 2025-4-15
Angew Chem Int Ed Engl. 2022-12-12
Angew Chem Int Ed Engl. 2022-9-5
Angew Chem Int Ed Engl. 2022-7-25
Bioact Mater. 2021-12-20