文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用功能化金纳米颗粒作为等离子体生物传感器阵列比色检测口腔细菌。

Colorimetric detection of oral bacteria using functionalized gold nanoparticles as a plasmonic biosensor array.

作者信息

Wenck Christina, Leopoldt Dorthe, Habib Mosaieb, Hegermann Jan, Stiesch Meike, Doll-Nikutta Katharina, Heisterkamp Alexander, Torres-Mapa Maria Leilani

机构信息

Institute of Quantum Optics, Leibniz University Hannover Germany

Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE) Germany.

出版信息

Nanoscale Adv. 2024 Feb 8;6(5):1447-1459. doi: 10.1039/d3na00477e. eCollection 2024 Feb 27.


DOI:10.1039/d3na00477e
PMID:38419865
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10898432/
Abstract

Early detection of specific oral bacterial species would enable timely treatment and prevention of certain oral diseases. In this work, we investigated the sensitivity and specificity of functionalized gold nanoparticles for plasmonic sensing of oral bacteria. This approach is based on the aggregation of positively charged gold nanoparticles on the negatively charged bacteria surface and the corresponding localized surface plasmon resonance (LSPR) shift. Gold nanoparticles were synthesized in different sizes, shapes and functionalization. A biosensor array was developed consisting of spherical- and anisotropic-shaped (1-hexadecyl) trimethylammonium bromide (CTAB) and spherical mercaptoethylamine (MEA) gold nanoparticles. It was used to detect four oral bacterial species (, , and ). The plasmonic response was measured and analysed using and UV-vis absorbance values. Both methods successfully detected the individual bacterial species based on their unique responses to the biosensor array. We present an in-depth study relating the bacteria zeta potential and AuNP aggregation to plasmonic response. The sensitivity depends on multiple parameters, such as bacterial species and concentration as well as gold nanoparticle shape, concentration and functionalization.

摘要

早期检测特定的口腔细菌种类能够实现某些口腔疾病的及时治疗和预防。在这项工作中,我们研究了功能化金纳米颗粒用于口腔细菌等离子体传感的灵敏度和特异性。这种方法基于带正电荷的金纳米颗粒在带负电荷的细菌表面的聚集以及相应的局域表面等离子体共振(LSPR)位移。合成了不同尺寸、形状和功能化的金纳米颗粒。开发了一种生物传感器阵列,其由球形和各向异性形状的(十六烷基)三甲基溴化铵(CTAB)以及球形巯基乙胺(MEA)金纳米颗粒组成。它被用于检测四种口腔细菌种类(、、和)。使用和紫外可见吸光度值测量并分析等离子体响应。两种方法都基于细菌对生物传感器阵列的独特响应成功检测出了各个细菌种类。我们进行了一项深入研究,将细菌的zeta电位和金纳米颗粒聚集与等离子体响应联系起来。灵敏度取决于多个参数,如细菌种类和浓度以及金纳米颗粒的形状、浓度和功能化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69b2/10898432/b34e64b80200/d3na00477e-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69b2/10898432/b92bca7a3e86/d3na00477e-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69b2/10898432/b86cfc1e79d9/d3na00477e-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69b2/10898432/63e216ddf493/d3na00477e-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69b2/10898432/904e13a8ca2c/d3na00477e-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69b2/10898432/61506c3debce/d3na00477e-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69b2/10898432/fab590da9132/d3na00477e-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69b2/10898432/d7c9e5a28b1c/d3na00477e-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69b2/10898432/b34e64b80200/d3na00477e-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69b2/10898432/b92bca7a3e86/d3na00477e-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69b2/10898432/b86cfc1e79d9/d3na00477e-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69b2/10898432/63e216ddf493/d3na00477e-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69b2/10898432/904e13a8ca2c/d3na00477e-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69b2/10898432/61506c3debce/d3na00477e-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69b2/10898432/fab590da9132/d3na00477e-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69b2/10898432/d7c9e5a28b1c/d3na00477e-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69b2/10898432/b34e64b80200/d3na00477e-f8.jpg

相似文献

[1]
Colorimetric detection of oral bacteria using functionalized gold nanoparticles as a plasmonic biosensor array.

Nanoscale Adv. 2024-2-8

[2]
Multimodal plasmonic biosensing nanostructures prepared by DNA-directed immobilization of multifunctional DNA-gold nanoparticles.

Biosens Bioelectron. 2016-11-11

[3]
Localized surface plasmon resonance-mediated fluorescence signals in plasmonic nanoparticle-quantum dot hybrids for ultrasensitive Zika virus RNA detection via hairpin hybridization assays.

Biosens Bioelectron. 2017-3-22

[4]
A plasmonic biosensor array exploiting plasmon coupling between gold nanorods and spheres for domoic acid detection via two methods.

Spectrochim Acta A Mol Biomol Spectrosc. 2021-5-5

[5]
Enzyme-guided plasmonic biosensor based on dual-functional nanohybrid for sensitive detection of thrombin.

Biosens Bioelectron. 2015-3-16

[6]
Symmetry Breaking-Induced Plasmonic Mode Splitting in Coupled Gold-Silver Alloy Nanodisk Array for Ultrasensitive RGB Colorimetric Biosensing.

ACS Appl Mater Interfaces. 2019-1-3

[7]
Colorimetric As (V) detection based on S-layer functionalized gold nanoparticles.

Talanta. 2015-11-1

[8]
Aptamer-based cocaine assay using a nanohybrid composed of ZnS/AgSe quantum dots, graphene oxide and gold nanoparticles as a fluorescent probe.

Mikrochim Acta. 2020-1-8

[9]
Nanoparticle-Based Plasmonic Biosensor for the Unamplified Genomic Detection of Carbapenem-Resistant Bacteria.

Diagnostics (Basel). 2023-2-9

[10]
Plasmonic Nanosensor Array for Multiplexed DNA-based Pathogen Detection.

ACS Sens. 2019-2-4

引用本文的文献

[1]
Label-free distinction of implant infection-associated bacterial biofilms by Mueller matrix polarimetry.

J Biomed Opt. 2025-8

[2]
Nano-enhanced Fenton/Fenton-like chemistry: integrating peroxidase nanozymes, MOFs, and MXenes for next-generation colorimetric biosensors.

Nanoscale Adv. 2025-6-30

[3]
Assessing the Effects of Surface-Stabilized Zero-Valent Iron Nanoparticles on Diverse Bacteria Species Using Complementary Statistical Models.

J Funct Biomater. 2025-3-20

本文引用的文献

[1]
Rapid specific detection of oral bacteria using Cas13-based SHERLOCK.

J Oral Microbiol. 2023-5-11

[2]
How Saliva Interferes with Colorimetric Gold Nanoparticle Aptasensors: Understanding and Mitigating Surface Interactions.

ACS Sens. 2023-4-28

[3]
Porphyromonas gingivalis Virulence Factors and Clinical Significance in Periodontal Disease and Coronary Artery Diseases.

Pathogens. 2022-10-11

[4]
Periodontal and Peri-Implant Microbiome Dysbiosis Is Associated With Alterations in the Microbial Community Structure and Local Stability.

Front Microbiol. 2022-1-25

[5]
Salivary Microbial Dysbiosis Is Associated With Peri-Implantitis: A Case-Control Study in a Brazilian Population.

Front Cell Infect Microbiol. 2021

[6]
Oral pathogen in the pathogenesis of colorectal cancer.

J Gastroenterol Hepatol. 2022-2

[7]
OralDisk: A Chair-Side Compatible Molecular Platform Using Whole Saliva for Monitoring Oral Health at the Dental Practice.

Biosensors (Basel). 2021-10-28

[8]
Microbial profiles of peri-implant mucositis and peri-implantitis: Submucosal microbial dysbiosis correlates with disease severity.

Clin Oral Implants Res. 2022-2

[9]
Selective and easy detection of the Porphyromonas gingivalis fimA type II and IV genes by loop-mediated isothermal amplification.

J Microbiol Methods. 2021-6

[10]
Challenges for cysteamine stabilization, quantification, and biological effects improvement.

J Pharm Anal. 2020-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索