文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用互补统计模型评估表面稳定的零价铁纳米颗粒对多种细菌物种的影响。

Assessing the Effects of Surface-Stabilized Zero-Valent Iron Nanoparticles on Diverse Bacteria Species Using Complementary Statistical Models.

作者信息

Carnathan Brittany J, Stevens Dinny, Shikha Swarna, Slater Carson, Byford Nathen, Sturdivant Rodney X, Zarzosa Kuzy, Braswell W Evan, Sayes Christie M

机构信息

Department of Biology, Baylor University, Waco, TX 76798, USA.

Department of Environmental Science, Baylor University, Waco, TX 76798, USA.

出版信息

J Funct Biomater. 2025 Mar 20;16(3):113. doi: 10.3390/jfb16030113.


DOI:10.3390/jfb16030113
PMID:40137392
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11943110/
Abstract

Nanoparticles are proposed as alternatives to traditional antimicrobial agents. By manipulating a nanoparticle's core and surface coating, antimicrobial effects against various microbial populations can be customized, known as the "designer effect". However, the antimicrobial properties of nanoparticle core-coating combinations are understudied; little research exists on their effects on diverse bacteria. The antimicrobial effects of surface-stabilized zero-valent iron nanoparticles (FeNPs) are particularly interesting due to their stability in water and ferromagnetic properties. This study explores the impact of FeNPs coated with three surface coatings on six diverse bacterial species. The FeNPs were synthesized and capped with L-ascorbic acid (AA), cetyltrimethylammonium bromide (CTAB), or polyvinylpyrrolidone (PVP) using a bottom-up approach. Zone of inhibition (ZOI) values, assessed through the disc diffusion assay, indicated that AA-FeNPs and CTAB-FeNPs displayed the most potent antibacterial activity. Bacteria inhibition results ranked from most sensitive to least sensitive are the following: > > > > sp. > . Comparisons using ordinal regression and generalized linear mixed models revealed significant differences in bacterial responses to the different coatings and nanoparticle concentrations. The statistical model results are in agreement, thus increasing confidence in these conclusions. This study supports the feasibility of the "designer nanoparticle" concept and offers a framework for future research.

摘要

纳米颗粒被提议作为传统抗菌剂的替代品。通过操纵纳米颗粒的核心和表面涂层,可以定制针对各种微生物群体的抗菌效果,这被称为“定制效应”。然而,纳米颗粒核心-涂层组合的抗菌性能研究不足;关于它们对多种细菌的影响的研究很少。表面稳定的零价铁纳米颗粒(FeNPs)的抗菌效果因其在水中的稳定性和铁磁性能而特别有趣。本研究探讨了涂有三种表面涂层的FeNPs对六种不同细菌的影响。使用自下而上的方法合成了FeNPs并用L-抗坏血酸(AA)、十六烷基三甲基溴化铵(CTAB)或聚乙烯吡咯烷酮(PVP)进行了封端。通过纸片扩散法评估的抑菌圈(ZOI)值表明,AA-FeNPs和CTAB-FeNPs表现出最强的抗菌活性。细菌抑制结果从最敏感到最不敏感依次为:> > > > sp. > 。使用有序回归和广义线性混合模型进行的比较显示,不同涂层和纳米颗粒浓度下细菌的反应存在显著差异。统计模型结果一致,从而增加了对这些结论的信心。本研究支持“定制纳米颗粒”概念的可行性,并为未来研究提供了一个框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497a/11943110/a33e22aa8e4c/jfb-16-00113-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497a/11943110/51b43ba2075c/jfb-16-00113-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497a/11943110/39afc467a5bd/jfb-16-00113-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497a/11943110/da1cf937b130/jfb-16-00113-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497a/11943110/5734520c68bf/jfb-16-00113-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497a/11943110/4a4c18748dba/jfb-16-00113-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497a/11943110/862dd48b232c/jfb-16-00113-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497a/11943110/f362ee597f96/jfb-16-00113-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497a/11943110/85c4b8460971/jfb-16-00113-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497a/11943110/a33e22aa8e4c/jfb-16-00113-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497a/11943110/51b43ba2075c/jfb-16-00113-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497a/11943110/39afc467a5bd/jfb-16-00113-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497a/11943110/da1cf937b130/jfb-16-00113-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497a/11943110/5734520c68bf/jfb-16-00113-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497a/11943110/4a4c18748dba/jfb-16-00113-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497a/11943110/862dd48b232c/jfb-16-00113-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497a/11943110/f362ee597f96/jfb-16-00113-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497a/11943110/85c4b8460971/jfb-16-00113-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497a/11943110/a33e22aa8e4c/jfb-16-00113-g007.jpg

相似文献

[1]
Assessing the Effects of Surface-Stabilized Zero-Valent Iron Nanoparticles on Diverse Bacteria Species Using Complementary Statistical Models.

J Funct Biomater. 2025-3-20

[2]
Nanoparticle surface coatings produce distinct antibacterial effects that are consistent across diverse bacterial species.

Front Toxicol. 2023-3-3

[3]
Nanoparticle surface stabilizing agents influence antibacterial action.

Front Microbiol. 2023-2-9

[4]
Antimicrobial potency of differently coated 10 and 50 nm silver nanoparticles against clinically relevant bacteria Escherichia coli and Staphylococcus aureus.

Colloids Surf B Biointerfaces. 2018-6-18

[5]
Facile Multistep Synthesis of ZnO-Coated β-NaYF:Yb/Tm Upconversion Nanoparticles as an Antimicrobial Photodynamic Therapy for Persistent Small Colony Variants.

ACS Appl Bio Mater. 2021-8-16

[6]
A novel study on enhancing ascorbic acid colorimetric detection: Green synthesis-driven crystallinity, stability, and catalytic performance of iron oxide nanoparticles in Mo(VI)/FeNPs-based biosensors.

Plant Physiol Biochem. 2025-5

[7]
antimicrobial activity of silver nanoparticles against selected Gram-negative and Gram-positive pathogens.

Med Pharm Rep. 2024-7

[8]
Biologically synthesized iron nanoparticles (FeNPs) from Phoenix dactylifera have anti-bacterial activities.

Sci Rep. 2021-11-11

[9]
Facile Synthesis of Magnetic Iron-Based Nanoparticles from the Leach Solution of Hyperaccumulator Plant for the Antibacterial Activity and Colorimetric Detection of Ascorbic Acid.

ACS Appl Bio Mater. 2022-11-21

[10]
Optimising titanium implant stability and infection resistance through iron nanoparticle coatings: A preclinical investigation.

J Stomatol Oral Maxillofac Surg. 2024-11-15

本文引用的文献

[1]
Evaluating the Antibacterial Potential of Distinct Size Populations of Stabilized Zinc Nanoparticles.

ACS Appl Mater Interfaces. 2025-1-8

[2]
A study on disinfection and adhesion behaviour between bacteria and photocatalytic nanostructures by extended DLVO.

Environ Technol. 2024-12

[3]
Colorimetric detection of oral bacteria using functionalized gold nanoparticles as a plasmonic biosensor array.

Nanoscale Adv. 2024-2-8

[4]
Anthropogenic contamination sources drive differences in antimicrobial-resistant in three urban lakes.

Appl Environ Microbiol. 2024-3-20

[5]
Harnessing the potential of bimetallic nanoparticles: Exploring a novel approach to address antimicrobial resistance.

World J Microbiol Biotechnol. 2024-2-10

[6]
Recent trends in preparation and biomedical applications of iron oxide nanoparticles.

J Nanobiotechnology. 2024-1-8

[7]
Insights into antibiotic and heavy metal resistance interactions in Escherichia coli isolated from livestock manure and fertilized soil.

J Environ Manage. 2024-2

[8]
An ultra-small fluorescence zero-valent iron nanoclusters selectively kill gram-positive bacteria by promoting reactive oxygen species generation.

Colloids Surf B Biointerfaces. 2023-7

[9]
Mechanistic insights into nanoparticle surface-bacterial membrane interactions in overcoming antibiotic resistance.

Front Microbiol. 2023-4-21

[10]
Antibacterial effect of vitamin C against uropathogenic E. coli in vitro and in vivo.

BMC Microbiol. 2023-4-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索