Tsinghua University, Shenzhen International Graduate School, Shenzhen, China.
Tsinghua University, Shenzhen International Graduate School, Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen, China.
J Biomed Opt. 2024 May;29(5):052919. doi: 10.1117/1.JBO.29.5.052919. Epub 2024 Feb 28.
Most biological fibrous tissues have anisotropic optical characteristics, which originate from scattering by their fibrous microstructures and birefringence of biological macromolecules. The orientation-related anisotropic interpretation is of great value in biological tissue characterization and pathological diagnosis.
We focus on intrinsic birefringence and form birefringence in biological tissue samples. By observing and comparing the forward Mueller matrix of typical samples, we can understand the interpretation ability of orientation-related polarization parameters and further distinguish the sources and trends of anisotropy in tissues.
For glass fiber, silk fiber, skeletal muscle, and tendon, we construct a forward measuring device to obtain the Mueller matrix image and calculate the anisotropic parameters related to orientation. The statistical analysis method based on polar coordinates can effectively analyze the difference in anisotropic parameters.
For those birefringent fibers, the statistical distribution of fast-axis values derived from Mueller matrix polar decomposition was found to exhibit bimodal characteristics, which is a key point in distinguishing the single-layer birefringent fiber sample from a layered, multioriented fibrous sample. The application conditions and interference factors of anisotropic orientation parameters are analyzed. Based on the parameters extracted from the orientation bimodal distribution, we can evaluate the relative change trend of intrinsic birefringence and form birefringence in anisotropic samples.
The cross-vertical bimodal distribution of the fast axis of anisotropic fibers is beneficial to accurately analyze the anisotropic changes in biological tissues. The results imply the potential of anisotropic orientation analysis for applications in pathological diagnosis.
大多数生物纤维组织具有各向异性的光学特性,这源于其纤维微观结构的散射和生物大分子的双折射。与方向相关的各向异性解释在生物组织特征描述和病理诊断中具有重要价值。
我们专注于生物组织样本中的固有双折射和形态双折射。通过观察和比较典型样本的正向 Mueller 矩阵,我们可以了解与方向相关的偏振参数的解释能力,并进一步区分组织各向异性的来源和趋势。
对于玻璃纤维、丝纤维、骨骼肌和肌腱,我们构建了正向测量装置以获得 Mueller 矩阵图像,并计算与方向相关的各向异性参数。基于极坐标的统计分析方法可以有效地分析各向异性参数的差异。
对于那些双折射纤维,从 Mueller 矩阵极分解得出的快轴值的统计分布呈现双峰特征,这是区分单层双折射纤维样本和分层、多向纤维样本的关键。分析了各向异性取向参数的应用条件和干扰因素。基于从取向双峰分布中提取的参数,可以评估各向异性样本中固有双折射和形态双折射的相对变化趋势。
各向异性纤维的纵横交错双峰分布有助于准确分析生物组织的各向异性变化。结果表明,各向异性取向分析在病理诊断中的应用具有潜力。