Guo Yihong, Zeng Nan, He Honghui, Yun Tianliang, Du E, Liao Ran, He Yonghong, Ma Hui
Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
Opt Express. 2013 Jul 29;21(15):18361-70. doi: 10.1364/OE.21.018361.
In this work, we apply Mueller matrix polar decomposition (MMPD) method in a forward scattering configuration on anisotropic scattering samples and look for the physics origin of depolarization and retardance. Using Monte Carlo simulations on the sphere-cylinder birefringence model (SCBM), and forward scattering experiments on samples containing polystyrene microspheres, well-aligned glass fibers and polyacrylamide, we examine in detail the relationship between the MMPD parameters and the microscopic structure of the samples. The results show that the spherical scatterers and birefringent medium contribute to depolarization and retardance respectively, but the cylindrical scatterers contribute to both. Retardance due to the cylindrical scatterers changes with their density, size and order of alignment. Total retardance is a simple sum of both contributions when cylinders are in parallel to the extraordinary axis of birefringence.
在这项工作中,我们将穆勒矩阵偏振分解(MMPD)方法应用于正向散射配置下的各向异性散射样品,并探寻去极化和相位延迟的物理起源。通过对球 - 柱双折射模型(SCBM)进行蒙特卡罗模拟,以及对含有聚苯乙烯微球、排列良好的玻璃纤维和聚丙烯酰胺的样品进行正向散射实验,我们详细研究了MMPD参数与样品微观结构之间的关系。结果表明,球形散射体和双折射介质分别对去极化和相位延迟有贡献,但圆柱形散射体对两者都有贡献。由于圆柱形散射体导致的相位延迟随其密度、尺寸和排列顺序而变化。当圆柱体与双折射的非常轴平行时,总相位延迟是两者贡献的简单相加。