Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.
Faraday Discuss. 2017 Aug 24;200:251-270. doi: 10.1039/c7fd00023e.
Mineral dust and secondary organic aerosols (SOA) account for a major fraction of atmospheric particulate matter, affecting climate, air quality and public health. How mineral dust interacts with SOA to influence cloud chemistry and public health, however, is not well understood. Here, we investigated the formation of reactive oxygen species (ROS), which are key species of atmospheric and physiological chemistry, in aqueous mixtures of SOA and mineral dust by applying electron paramagnetic resonance (EPR) spectrometry in combination with a spin-trapping technique, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a kinetic model. We found that substantial amounts of ROS including OH, superoxide as well as carbon- and oxygen-centred organic radicals can be formed in aqueous mixtures of isoprene, α-pinene, naphthalene SOA and various kinds of mineral dust (ripidolite, montmorillonite, kaolinite, palygorskite, and Saharan dust). The molar yields of total radicals were ∼0.02-0.5% at 295 K, which showed higher values at 310 K, upon 254 nm UV exposure, and under low pH (<3) conditions. ROS formation can be explained by the decomposition of organic hydroperoxides, which are a prominent fraction of SOA, through interactions with water and Fenton-like reactions with dissolved transition metal ions. Our findings imply that the chemical reactivity and aging of SOA particles can be enhanced upon interaction with mineral dust in deliquesced particles or cloud/fog droplets. SOA decomposition could be comparably important to the classical Fenton reaction of HO with Fe and that SOA can be the main source of OH radicals in aqueous droplets at low concentrations of HO and Fe. In the human respiratory tract, the inhalation and deposition of SOA and mineral dust can also lead to the release of ROS, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols in the Anthropocene.
矿物质粉尘和二次有机气溶胶(SOA)是大气颗粒物的主要组成部分,它们影响着气候、空气质量和公众健康。然而,矿物质粉尘与 SOA 相互作用如何影响云化学和公众健康,目前还不太清楚。在这里,我们通过电子顺磁共振(EPR)光谱结合自旋捕获技术、液相色谱-串联质谱(LC-MS/MS)和动力学模型,研究了 SOA 和矿物质粉尘在水溶液中的反应性氧物种(ROS)的形成,这些物种是大气和生理化学的关键物质。我们发现,在异戊二烯、α-蒎烯、萘 SOA 和各种矿物质粉尘(锐钛矿、蒙脱石、高岭石、坡缕石和撒哈拉粉尘)的水溶液中,可以形成大量的 ROS,包括 OH、超氧自由基以及碳和氧中心有机自由基。在 295 K 时,总自由基的摩尔产率约为 0.02-0.5%,在 310 K 时,在 254nm UV 照射下和在低 pH(<3)条件下,摩尔产率更高。ROS 的形成可以通过有机过氧化物的分解来解释,有机过氧化物是 SOA 的一个重要组成部分,它通过与水的相互作用和与溶解的过渡金属离子的芬顿样反应而分解。我们的研究结果表明,SOA 颗粒在与可潮解颗粒或云/雾滴中的矿物质粉尘相互作用时,其化学活性和老化可以增强。SOA 的分解可能与 HO 与 Fe 的经典芬顿反应相当重要,并且在 HO 和 Fe 的浓度较低时,SOA 可能是水中液滴中 OH 自由基的主要来源。在人体呼吸道中,SOA 和矿物质粉尘的吸入和沉积也会导致 ROS 的释放,这可能导致氧化应激,并在大气气溶胶对人类世健康的不利影响中发挥重要作用。