Suppr超能文献

基于 microRNA 特征的胰腺癌血液诊断模型的机器学习方法。

A Machine Learning Method for a Blood Diagnostic Model of Pancreatic Cancer Based on microRNA Signatures.

机构信息

The Affiliated People's Hospital of Ningbo University.

Department of Hepatopancreatobiliary Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China.

出版信息

Crit Rev Immunol. 2024;44(3):13-23. doi: 10.1615/CritRevImmunol.2023051250.

Abstract

This study aimed to construct a blood diagnostic model for pancreatic cancer (PC) using miRNA signatures by a combination of machine learning and biological experimental verification. Gene expression profiles of patients with PC and transcriptome normalization data were obtained from the Gene Expression Omnibus (GEO) database. Using random forest algorithm, lasso regression algorithm, and multivariate cox regression analyses, the classifier of differentially expressed miRNAs was identified based on algorithms and functional properties. Next, the ROC curve analysis was used to evaluate the predictive performance of the diagnostic model. Finally, we analyzed the expression of two specific miRNAs in Capan-1, PANC-1, and MIA PaCa-2 pancreatic cells using qRT-PCR. Integrated microarray analysis revealed that 33 common miRNAs exhibited significant differences in expression profiles between tumor and normal groups (P value < 0.05 and |logFC| > 0.3). Pathway analysis showed that differentially expressed miRNAs were related to P00059 p53 pathway, hsa04062 chemokine signaling pathway, and cancer-related pathways including PC. In ENCORI database, the hsa-miR-4486 and hsa-miR-6075 were identified by random forest algorithm and lasso regression algorithm and introduced as major miRNA markers in PC diagnosis. Further, the receiver operating characteristic curve analysis achieved the area under curve score > 80%, showing good sensitivity and specificity of the two-miRNA signature model in PC diagnosis. Additionally, hsa-miR-4486 and hsa-miR-6075 genes expressions in three pancreatic cells were all up-regulated by qRT-PCR. In summary, these findings suggest that the two miRNAs, hsa-miR-4486 and hsa-miR-6075, could serve as valuable prognostic markers for PC.

摘要

本研究旨在通过机器学习和生物实验验证相结合,构建基于 miRNA 特征的胰腺癌(PC)血液诊断模型。从基因表达综合数据库(GEO)中获取 PC 患者的基因表达谱和转录组归一化数据。使用随机森林算法、lasso 回归算法和多变量 cox 回归分析,根据算法和功能特性确定差异表达 miRNA 的分类器。接下来,通过 ROC 曲线分析评估诊断模型的预测性能。最后,使用 qRT-PCR 分析 Capan-1、PANC-1 和 MIA PaCa-2 胰腺细胞中两种特定 miRNA 的表达。综合微阵列分析显示,肿瘤和正常组之间的表达谱有 33 个共同的 miRNA 差异显著(P 值<0.05,|logFC|>0.3)。通路分析显示,差异表达的 miRNA 与 P00059 p53 通路、hsa04062 趋化因子信号通路和包括 PC 在内的癌症相关通路有关。在 ENCORI 数据库中,随机森林算法和 lasso 回归算法鉴定出 hsa-miR-4486 和 hsa-miR-6075,并将其作为 PC 诊断的主要 miRNA 标志物。进一步,受试者工作特征曲线分析获得的曲线下面积评分>80%,表明该两 miRNA 特征模型在 PC 诊断中具有良好的敏感性和特异性。此外,qRT-PCR 结果显示三个胰腺细胞中 hsa-miR-4486 和 hsa-miR-6075 基因表达均上调。综上所述,这两个 miRNA(hsa-miR-4486 和 hsa-miR-6075)可能作为 PC 的有价值的预后标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验