Suppr超能文献

一种作为乳腺癌潜在诊断标志物的九微小RNA特征:对1110例病例的综合研究

A nine-miRNA signature as a potential diagnostic marker for breast carcinoma: An integrated study of 1,110 cases.

作者信息

Xiong Dan-Dan, Lv Jun, Wei Kang-Lai, Feng Zhen-Bo, Chen Ji-Tian, Liu Ke-Cheng, Chen Gang, Luo Dian-Zhong

机构信息

Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.

Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.

出版信息

Oncol Rep. 2017 Jun;37(6):3297-3304. doi: 10.3892/or.2017.5600. Epub 2017 Apr 25.

Abstract

Growing evidence indicates that microRNAs (miRNAs) play critical roles in the initiation and progression of breast carcinoma (BC) and are promising diagnostic biomarkers. In the present study, we aimed to identify a multi-marker miRNA pool with high diagnostic performance for BC. We collected miRNA expression profiles of BC samples and normal breast tissues from The Cancer Genome Atlas (TCGA) and screened differentially expressed miRNAs by conducting two‑sample t-tests and by calculating log2 fold-change (log2FC) ratios. Statistical significance was established at p<0.001 and |log2FC| >1. Then, we generated receiver operating characteristic (ROC) curves, calculated the area under the curve (AUC) with a 95% confidence interval (95% CI), and calculated the diagnostic sensitivity and specificity using MedCalc software. Additionally, we predicted the targets of candidate miRNAs using 10 online databases: TarBase, miRTarBase, TargetScan, TargetMiner, microRNA.org, RNA22, PicTar-vert, miRDB, PITA and PolymiRTS. Target genes that were predicted by at least four algorithms were chosen, and cooperative targets of multiple miRNAs were further selected for GO and KEGG pathway analyses through the DAVID online tool. Eventually, a total of 66 differentially expressed miRNAs were identified after miRNA expression profiles were analyzed in BC and normal breast samples. Of these, we selected nine dysregulated miRNAs as candidate diagnostic markers: seven upregulated miRNAs (hsa-miR-21, hsa-miR-96, hsa-miR-183, hsa-miR‑182, hsa-miR-141, hsa-miR-200a and hsa-miR-429) and two downregulated miRNAs (hsa-miR-139 and hsa-miR‑145). The ROC curve for the combination of these nine differently expressed miRNAs showed extremely high diagnostic accuracy, with an AUC of 0.995 (95% CI, 0.988‑0.999) and diagnostic sensitivity and specificity of 98.7 and 98.9%, respectively. In conclusion, the combination of these nine miRNAs significantly improved the accuracy of breast cancer diagnosis.

摘要

越来越多的证据表明,微小RNA(miRNA)在乳腺癌(BC)的发生和发展中起关键作用,并且是很有前景的诊断生物标志物。在本研究中,我们旨在鉴定一组对BC具有高诊断性能的多标志物miRNA。我们从癌症基因组图谱(TCGA)收集了BC样本和正常乳腺组织的miRNA表达谱,并通过进行双样本t检验和计算log2倍变化(log2FC)比值来筛选差异表达的miRNA。在p<0.001和|log2FC|>1时确定统计学显著性。然后,我们生成了受试者工作特征(ROC)曲线,计算曲线下面积(AUC)及其95%置信区间(95%CI),并使用MedCalc软件计算诊断敏感性和特异性。此外,我们使用10个在线数据库预测候选miRNA的靶标:TarBase、miRTarBase、TargetScan、TargetMiner、microRNA.org、RNA22、PicTar-vert、miRDB、PITA和PolymiRTS。选择至少由四种算法预测的靶基因,并通过DAVID在线工具进一步选择多个miRNA的协同靶标进行GO和KEGG通路分析。最终,在对BC和正常乳腺样本的miRNA表达谱进行分析后,共鉴定出66个差异表达的miRNA。其中,我们选择了9个失调的miRNA作为候选诊断标志物:7个上调的miRNA(hsa-miR-21、hsa-miR-96、hsa-miR-183、hsa-miR-182、hsa-miR-141、hsa-miR-200a和hsa-miR-429)和2个下调的miRNA(hsa-miR-139和hsa-miR-145)。这9个差异表达的miRNA组合的ROC曲线显示出极高的诊断准确性,AUC为0.99(95%CI,0.988-0.999),诊断敏感性和特异性分别为98.7%和98.9%。总之,这9个miRNA的组合显著提高了乳腺癌诊断的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验