Suppr超能文献

通过密度泛函理论模拟的水合电子的偏摩尔溶剂化体积

Partial Molar Solvation Volume of the Hydrated Electron Simulated Via DFT.

作者信息

Borrelli William R, Mei Kenneth J, Park Sanghyun J, Schwartz Benjamin J

机构信息

Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States.

出版信息

J Phys Chem B. 2024 Mar 14;128(10):2425-2431. doi: 10.1021/acs.jpcb.3c05091. Epub 2024 Feb 29.

Abstract

Different simulation models of the hydrated electron produce different solvation structures, but it has been challenging to determine which simulated solvation structure, if any, is the most comparable to experiment. In a recent work, Neupane et al. [ , 127, 5941-5947] showed using Kirkwood-Buff theory that the partial molar volume of the hydrated electron, which is known experimentally, can be readily computed from an integral over the simulated electron-water radial distribution function. This provides a sensitive way to directly compare the hydration structure of different simulation models of the hydrated electron with experiment. Here, we compute the partial molar volume of an ab-initio-simulated hydrated electron model based on density-functional theory (DFT) with a hybrid functional at different simulated system sizes. We find that the partial molar volume of the DFT-simulated hydrated electron is not converged with respect to the system size for simulations with up to 128 waters. We show that even at the largest simulation sizes, the partial molar volume of DFT-simulated hydrated electrons is underestimated by a factor of 2 with respect to experiment, and at the standard 64-water size commonly used in the literature, DFT-based simulations underestimate the experimental solvation volume by a factor of ∼3.5. An extrapolation to larger box sizes does predict the experimental partial molar volume correctly; however, larger system sizes than those explored here are currently intractable without the use of machine-learned potentials. These results bring into question what aspects of the predicted hydrated electron radial distribution function, as calculated by DFT-based simulations with the PBEh-D3 functional, deviate from the true solvation structure.

摘要

水合电子的不同模拟模型会产生不同的溶剂化结构,但要确定哪种模拟的溶剂化结构(如果有的话)与实验最具可比性一直具有挑战性。在最近的一项工作中,Neupane等人[,127,5941 - 5947]使用柯克伍德 - 布夫理论表明,水合电子的偏摩尔体积(这是通过实验已知的)可以很容易地从模拟的电子 - 水径向分布函数的积分中计算出来。这提供了一种直接将水合电子的不同模拟模型的水合结构与实验进行比较的灵敏方法。在这里,我们基于密度泛函理论(DFT)和杂化泛函,在不同的模拟系统尺寸下计算从头算模拟的水合电子模型的偏摩尔体积。我们发现,对于多达128个水分子的模拟,DFT模拟的水合电子的偏摩尔体积相对于系统尺寸没有收敛。我们表明,即使在最大的模拟尺寸下,DFT模拟的水合电子的偏摩尔体积相对于实验也被低估了2倍,而在文献中常用的标准64水尺寸下,基于DFT的模拟将实验溶剂化体积低估了约3.5倍。对更大盒子尺寸的外推确实能正确预测实验偏摩尔体积;然而,在不使用机器学习势的情况下,比这里探索的更大的系统尺寸目前是难以处理的。这些结果让人质疑,用具有PBEh - D3泛函的基于DFT的模拟计算出的预测水合电子径向分布函数的哪些方面偏离了真实的溶剂化结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5ab/10945486/747ff539f02d/jp3c05091_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验