Alexakis Alexandros, Marino Raffaele, Mininni Pablo D, van Kan Adrian, Foldes Raffaello, Feraco Fabio
Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.
Université de Lyon, CNRS, École Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Laboratoire de Mécanique des Fluides et d'Acoustique, UMR5509 - F-69134, Écully, France.
Science. 2024 Mar;383(6686):1005-1009. doi: 10.1126/science.adg8269. Epub 2024 Feb 29.
How turbulent convective fluctuations organize to form larger-scale structures in planetary atmospheres remains a question that eludes quantitative answers. The assumption that this process is the result of an inverse cascade was suggested half a century ago in two-dimensional fluids, but its applicability to atmospheric and oceanic flows remains heavily debated, hampering our understanding of the energy balance in planetary systems. We show using direct numerical simulations with spatial resolutions of 12288 × 384 points that rotating and stratified flows can support a bidirectional cascade of energy, in three dimensions, with a ratio of Rossby to Froude numbers comparable to that of Earth's atmosphere. Our results establish that, in dry atmospheres, spontaneous order can arise through an inverse cascade to the largest spatial scales.
在行星大气中,湍流对流波动如何组织形成更大尺度的结构仍是一个难以给出定量答案的问题。半个世纪前,在二维流体中有人提出这一过程是反向级联的结果,但它对大气和海洋流动的适用性仍存在激烈争论,这妨碍了我们对行星系统能量平衡的理解。我们使用空间分辨率为12288×384点的直接数值模拟表明,旋转和分层流在三维空间中可以支持能量的双向级联,罗斯比数与弗劳德数之比与地球大气相当。我们的结果表明,在干燥大气中,自发的有序状态可以通过向最大空间尺度的反向级联而产生。