Marino Raffaele, Xie Jin-Han
CNRS, École Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Laboratoire de Mécanique des Fluides et d'Acoustique, UMR5509, F-69134 Écully, France.
Department of Mechanics and Engineering Science at College of Engineering and State Key Laboratory for Turbulence and Complex Systems, Peking University, Beijing 100871, PR China.
Sci Adv. 2025 Jul 4;11(27):eadv8988. doi: 10.1126/sciadv.adv8988. Epub 2025 Jul 2.
Expanding plasmas are ubiquitous in the Universe, from supernovae to stellar atmospheres and winds, carrying various forms of energy. Crucial for understanding their behavior, the characterization of the scale-to-scale energy transfer resulting from the interplay of turbulent motions, propagating waves, and instabilities is a key scope of major space missions. Here, we show how simultaneous upscale and downscale energy transfers occur in solar wind, leading statistically to equipartition of the turbulent energy flux. Our study sheds light on the paradigm of the existence of dual energy cascades in astrophysical plasmas, identifying the scales at which energy sources act in the magnetohydrodynamic regime driving turbulent dynamics in solar wind. These findings suggest that a significant fraction of the energy injected into stellar winds at scales much smaller than those of galaxies could be transferred to larger scales through turbulence, potentially influencing star formation processes.
膨胀的等离子体在宇宙中无处不在,从超新星到恒星大气和恒星风,携带各种形式的能量。对于理解它们的行为至关重要的是,由湍流运动、传播波和不稳定性的相互作用导致的尺度间能量转移的特征是主要太空任务的一个关键研究范围。在这里,我们展示了太阳风中如何同时发生向上和向下的能量转移,从统计上导致湍动能通量的均分。我们的研究揭示了天体物理等离子体中双能量级联存在的范式,确定了在磁流体动力学 regime 中驱动太阳风湍流动力学的能量源作用的尺度。这些发现表明,在比星系尺度小得多的尺度上注入恒星风的很大一部分能量可能通过湍流转移到更大的尺度,从而可能影响恒星形成过程。