Suppr超能文献

CT 深度学习重建算法:在降低剂量指标方面,与 FBP 和统计迭代重建算法相比,对脑协议的图像质量评估。

A CT deep learning reconstruction algorithm: Image quality evaluation for brain protocol at decreasing dose indexes in comparison with FBP and statistical iterative reconstruction algorithms.

机构信息

Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.

Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Unit of Medical Physics, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy.

出版信息

Phys Med. 2024 Mar;119:103319. doi: 10.1016/j.ejmp.2024.103319. Epub 2024 Feb 28.

Abstract

PURPOSE

To characterise the impact of Precise Image (PI) deep learning reconstruction algorithm on image quality, compared to filtered back-projection (FBP) and iDose iterative reconstruction for brain computed tomography (CT) phantom images.

METHODS

Catphan-600 phantom was acquired with an Incisive CT scanner using a dedicated brain protocol, at six different dose levels (volume computed tomography dose index (CTDI): 7/14/29/49/56/67 mGy). Images were reconstructed using FBP, levels 2/5 of iDose, and PI algorithm (Sharper/Sharp/Standard/Smooth/Smoother). Image quality was assessed by evaluating CT numbers, image histograms, noise, image non-uniformity (NU), noise power spectrum, target transfer function, and detectability index.

RESULTS

The five PI levels did not significantly affect the mean CT number. For a given CTDI using Sharper-to-Smoother levels, the spatial resolution for all the investigated materials and the detectability index increased while the noise magnitude decreased, slightly affecting noise texture. For a fixed PI level increasing the CTDI the detectability index increased, the noise magnitude decreased. From 29 mGy, NU values converged within 1 Hounsfield Unit from each other without a substantial improvement at higher CTDI values.

CONCLUSIONS

The improved performances of intermediate PI levels in brain protocols compared to conventional algorithms seem to suggest a potential reduction of CTDI.

摘要

目的

比较 Precise Image(PI)深度学习重建算法与滤波反投影(FBP)和 iDose 迭代重建在脑 CT 体模图像中的图像质量影响。

方法

使用专用脑协议在 Incisive CT 扫描仪上采集 Catphan-600 体模,在六个不同剂量水平(容积 CT 剂量指数(CTDI):7/14/29/49/56/67 mGy)下进行。使用 FBP、iDose 等级 2/5 和 PI 算法(锐化/锐化/标准/平滑/更平滑)进行图像重建。通过评估 CT 值、图像直方图、噪声、图像不均匀性(NU)、噪声功率谱、目标传递函数和可检测性指数来评估图像质量。

结果

五个 PI 水平对平均 CT 值没有显著影响。对于给定的 CTDI 使用 Sharper 到 Smoother 等级,所有调查材料的空间分辨率和可检测性指数增加,而噪声幅度减小,略微影响噪声纹理。对于固定的 PI 水平,随着 CTDI 的增加,可检测性指数增加,噪声幅度减小。从 29 mGy 开始,NU 值在彼此之间收敛 1 个亨氏单位内,而在更高的 CTDI 值下没有实质性的改善。

结论

与传统算法相比,脑协议中中间 PI 水平的改进性能似乎表明 CTDI 可能会降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验