Suppr超能文献

深度学习 CT 影像组学分析在克罗恩病与肠结核鉴别诊断中的应用

Deep Learning Radiomics Analysis of CT Imaging for Differentiating Between Crohn's Disease and Intestinal Tuberculosis.

机构信息

Department of Medical Information, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.

Henan Key Laboratory of Image Diagnosis and Treatment for Digestive System Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.

出版信息

J Imaging Inform Med. 2024 Aug;37(4):1516-1528. doi: 10.1007/s10278-024-01059-0. Epub 2024 Feb 29.

Abstract

This study aimed to develop and evaluate a CT-based deep learning radiomics model for differentiating between Crohn's disease (CD) and intestinal tuberculosis (ITB). A total of 330 patients with pathologically confirmed as CD or ITB from the First Affiliated Hospital of Zhengzhou University were divided into the validation dataset one (CD: 167; ITB: 57) and validation dataset two (CD: 78; ITB: 28). Based on the validation dataset one, the synthetic minority oversampling technique (SMOTE) was adopted to create balanced dataset as training data for feature selection and model construction. The handcrafted and deep learning (DL) radiomics features were extracted from the arterial and venous phases images, respectively. The interobserver consistency analysis, Spearman's correlation, univariate analysis, and the least absolute shrinkage and selection operator (LASSO) regression were used to select features. Based on extracted multi-phase radiomics features, six logistic regression models were finally constructed. The diagnostic performances of different models were compared using ROC analysis and Delong test. The arterial-venous combined deep learning radiomics model for differentiating between CD and ITB showed a high prediction quality with AUCs of 0.885, 0.877, and 0.800 in SMOTE dataset, validation dataset one, and validation dataset two, respectively. Moreover, the deep learning radiomics model outperformed the handcrafted radiomics model in same phase images. In validation dataset one, the Delong test results indicated that there was a significant difference in the AUC of the arterial models (p = 0.037), while not in venous and arterial-venous combined models (p = 0.398 and p = 0.265) as comparing deep learning radiomics models and handcrafted radiomics models. In our study, the arterial-venous combined model based on deep learning radiomics analysis exhibited good performance in differentiating between CD and ITB.

摘要

本研究旨在开发和评估一种基于 CT 的深度学习放射组学模型,用于区分克罗恩病(CD)和肠结核(ITB)。共纳入郑州大学第一附属医院经病理证实为 CD 或 ITB 的 330 例患者,分为验证数据集一(CD:167 例;ITB:57 例)和验证数据集二(CD:78 例;ITB:28 例)。基于验证数据集一,采用合成少数过采样技术(SMOTE)创建平衡数据集,作为特征选择和模型构建的训练数据。分别从动脉期和静脉期图像中提取手工和深度学习(DL)放射组学特征。采用组内一致性分析、Spearman 相关性分析、单因素分析和最小绝对收缩和选择算子(LASSO)回归进行特征选择。基于提取的多期放射组学特征,最终构建了 6 个逻辑回归模型。采用 ROC 分析和 DeLong 检验比较不同模型的诊断性能。CD 和 ITB 鉴别中动脉-静脉联合深度学习放射组学模型显示出较高的预测质量,在 SMOTE 数据集、验证数据集一和验证数据集二中 AUC 值分别为 0.885、0.877 和 0.800。此外,在相同相位图像中,深度学习放射组学模型优于手工放射组学模型。在验证数据集一中,DeLong 检验结果表明,动脉模型的 AUC 值差异有统计学意义(p=0.037),而静脉模型和动脉-静脉联合模型无差异(p=0.398 和 p=0.265),即比较深度学习放射组学模型和手工放射组学模型。在本研究中,基于深度学习放射组学分析的动脉-静脉联合模型在区分 CD 和 ITB 方面表现出良好的性能。

相似文献

1
Deep Learning Radiomics Analysis of CT Imaging for Differentiating Between Crohn's Disease and Intestinal Tuberculosis.
J Imaging Inform Med. 2024 Aug;37(4):1516-1528. doi: 10.1007/s10278-024-01059-0. Epub 2024 Feb 29.
3
Applying logistic LASSO regression for the diagnosis of atypical Crohn's disease.
Sci Rep. 2022 Jul 5;12(1):11340. doi: 10.1038/s41598-022-15609-5.
9
Volumetric visceral fat machine learning phenotype on CT for differential diagnosis of inflammatory bowel disease.
Eur Radiol. 2023 Mar;33(3):1862-1872. doi: 10.1007/s00330-022-09171-x. Epub 2022 Oct 18.

引用本文的文献

1
Combining radiomics and deep learning to predict liver metastasis of gastric cancer on CT image.
Front Oncol. 2025 Jun 24;15:1613972. doi: 10.3389/fonc.2025.1613972. eCollection 2025.
2
Urinary lipoarabinomannan for gastrointestinal tuberculosis: Another tool in the kit.
Indian J Gastroenterol. 2025 Jun 19. doi: 10.1007/s12664-025-01795-3.
3
Applications of artificial intelligence in abdominal imaging.
Abdom Radiol (NY). 2025 May 26. doi: 10.1007/s00261-025-04990-0.

本文引用的文献

1
Deep learning in neuroimaging data analysis: Applications, challenges, and solutions.
Front Neuroimaging. 2022 Oct 26;1:981642. doi: 10.3389/fnimg.2022.981642. eCollection 2022.
2
A Coronary CT Angiography Radiomics Model to Identify Vulnerable Plaque and Predict Cardiovascular Events.
Radiology. 2023 Apr;307(2):e221693. doi: 10.1148/radiol.221693. Epub 2023 Feb 14.
3
Computed tomography-based deep-learning prediction of lymph node metastasis risk in locally advanced gastric cancer.
Front Oncol. 2022 Sep 23;12:969707. doi: 10.3389/fonc.2022.969707. eCollection 2022.
6
CT-based radiomics analysis of different machine learning models for differentiating benign and malignant parotid tumors.
Eur Radiol. 2022 Oct;32(10):6953-6964. doi: 10.1007/s00330-022-08830-3. Epub 2022 Apr 29.
7
Enterogenous Microbiotic Markers in the Differential Diagnosis of Crohn's Disease and Intestinal Tuberculosis.
Front Immunol. 2022 Mar 16;13:820891. doi: 10.3389/fimmu.2022.820891. eCollection 2022.
8
Intestinal Tuberculosis.
N Engl J Med. 2022 Mar 31;386(13):e30. doi: 10.1056/NEJMicm2114345. Epub 2022 Mar 26.
9
Small bowel Crohn's disease: optimal modality for diagnosis and monitoring.
Curr Opin Gastroenterol. 2022 May 1;38(3):292-298. doi: 10.1097/MOG.0000000000000830. Epub 2022 Feb 25.
10
Differential Diagnosis and Molecular Stratification of Gastrointestinal Stromal Tumors on CT Images Using a Radiomics Approach.
J Digit Imaging. 2022 Apr;35(2):127-136. doi: 10.1007/s10278-022-00590-2. Epub 2022 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验