Suppr超能文献

神经影像数据分析中的深度学习:应用、挑战与解决方案。

Deep learning in neuroimaging data analysis: Applications, challenges, and solutions.

作者信息

Avberšek Lev Kiar, Repovš Grega

机构信息

Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia.

出版信息

Front Neuroimaging. 2022 Oct 26;1:981642. doi: 10.3389/fnimg.2022.981642. eCollection 2022.

Abstract

Methods for the analysis of neuroimaging data have advanced significantly since the beginning of neuroscience as a scientific discipline. Today, sophisticated statistical procedures allow us to examine complex multivariate patterns, however most of them are still constrained by assuming inherent linearity of neural processes. Here, we discuss a group of machine learning methods, called deep learning, which have drawn much attention in and outside the field of neuroscience in recent years and hold the potential to surpass the mentioned limitations. Firstly, we describe and explain the essential concepts in deep learning: the structure and the computational operations that allow deep models to learn. After that, we move to the most common applications of deep learning in neuroimaging data analysis: prediction of outcome, interpretation of internal representations, generation of synthetic data and segmentation. In the next section we present issues that deep learning poses, which concerns multidimensionality and multimodality of data, overfitting and computational cost, and propose possible solutions. Lastly, we discuss the current reach of DL usage in all the common applications in neuroimaging data analysis, where we consider the promise of multimodality, capability of processing raw data, and advanced visualization strategies. We identify research gaps, such as focusing on a limited number of criterion variables and the lack of a well-defined strategy for choosing architecture and hyperparameters. Furthermore, we talk about the possibility of conducting research with constructs that have been ignored so far or/and moving toward frameworks, such as RDoC, the potential of transfer learning and generation of synthetic data.

摘要

自神经科学作为一门科学学科诞生以来,神经影像学数据分析方法有了显著进展。如今,复杂的统计程序使我们能够研究复杂的多变量模式,然而其中大多数方法仍受限于假设神经过程具有内在线性。在此,我们讨论一组被称为深度学习的机器学习方法,近年来它们在神经科学领域内外都备受关注,并且有可能超越上述局限性。首先,我们描述并解释深度学习中的基本概念:使深度模型能够学习的结构和计算操作。之后,我们转向深度学习在神经影像学数据分析中最常见的应用:结果预测、内部表征解释、合成数据生成和分割。在下一节中,我们提出深度学习带来的问题,这些问题涉及数据的多维性和多模态性、过拟合和计算成本,并提出可能的解决方案。最后,我们讨论深度学习在神经影像学数据分析所有常见应用中的当前应用范围,在此我们考虑多模态的前景、处理原始数据的能力以及先进的可视化策略。我们确定了研究差距,例如专注于有限数量的标准变量以及缺乏选择架构和超参数的明确策略。此外,我们讨论了对迄今被忽视的结构进行研究或/并转向诸如“基于维度的脑科学分类(RDoC)”等框架的可能性、迁移学习的潜力以及合成数据的生成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdda/10406264/78f139587d54/fnimg-01-981642-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验