Suppr超能文献

CT 容积内脏脂肪机器学习表型用于炎症性肠病的鉴别诊断。

Volumetric visceral fat machine learning phenotype on CT for differential diagnosis of inflammatory bowel disease.

机构信息

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.

Biomedical Engineering Department, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Eur Radiol. 2023 Mar;33(3):1862-1872. doi: 10.1007/s00330-022-09171-x. Epub 2022 Oct 18.

Abstract

OBJECTIVES

To investigate whether volumetric visceral adipose tissue (VAT) features extracted using radiomics and three-dimensional convolutional neural network (3D-CNN) approach are effective in differentiating Crohn's disease (CD) and ulcerative colitis (UC).

METHODS

This retrospective study enrolled 316 patients (mean age, 36.25 ± 13.58 [standard deviation]; 219 men) with confirmed diagnosis of CD and UC who underwent CT enterography between 2012 and 2021. Volumetric VAT was semi-automatically segmented on the arterial phase images. Radiomics analysis was performed using principal component analysis (PCA) and the least absolute shrinkage and selection operator (LASSO) logistic regression algorithm. We developed a 3D-CNN model using VAT imaging data from the training cohort. Clinical covariates including age, sex, modified body mass index, and disease duration that impact VAT were added to the machine learning model for adjustment. The model's performance was evaluated on the testing cohort separating from the model's development process by its discrimination and clinical utility.

RESULTS

Volumetric VAT radiomics analysis with LASSO had the highest AUC value of 0.717 (95% CI, 0.614-0.820), though difference of diagnostic performance among the 3D-CNN model (AUC = 0.693; 95% CI, 0.587-0.798) and radiomics analysis with PCA (AUC = 0.662; 95% CI, 0.548-0.776) and LASSO have not reached statistical significance (all p > 0.05). The radiomics score was higher in UC than in CD on the testing cohort (mean ± SD, UC 0.29 ± 1.05 versus CD -0.60 ± 1.25; p < 0.001). The LASSO model with adjustment of clinical covariates reached an AUC of 0.775 (95%CI, 0.683-0.868).

CONCLUSION

The developed volumetric VAT-based radiomics and 3D-CNN models provided comparable and effective performance for the characterization of CD from UC.

KEY POINTS

• High-output feature data extracted from volumetric visceral adipose tissue on CT enterography had an effective diagnostic performance for differentiating Crohn's disease from ulcerative colitis. • With adjustment of clinical covariates that cause difference in volumetric visceral adipose tissue, adjusted clinical machine learning model reached stronger performance when distinguishing Crohn's disease patients from ulcerative colitis patients.

摘要

目的

探究基于容积内脏脂肪组织(VAT)的放射组学和三维卷积神经网络(3D-CNN)方法提取的特征是否可有效鉴别克罗恩病(CD)与溃疡性结肠炎(UC)。

方法

本回顾性研究纳入 2012 年至 2021 年间经 CT 肠造影检查确诊为 CD 和 UC 的 316 例患者(平均年龄 36.25±13.58[标准差];219 例男性)。采用半自动方法对动脉期图像进行容积 VAT 分割。采用主成分分析(PCA)和最小绝对值收缩和选择算子(LASSO)逻辑回归算法进行放射组学分析。我们使用来自训练队列的 VAT 成像数据开发了 3D-CNN 模型。将影响 VAT 的临床协变量(年龄、性别、改良体质量指数和疾病持续时间)添加到机器学习模型中进行调整。通过对与模型开发过程分离的测试队列进行评估,来评价模型的区分度和临床实用性。

结果

LASSO 容积 VAT 放射组学分析的 AUC 值最高(0.717,95%CI,0.614-0.820),但 3D-CNN 模型(AUC=0.693,95%CI,0.587-0.798)和 PCA 联合 LASSO 放射组学分析(AUC=0.662,95%CI,0.548-0.776)的诊断性能差异无统计学意义(均 P>0.05)。在测试队列中,UC 的放射组学评分高于 CD(均值±标准差,UC 为 0.29±1.05,CD 为-0.60±1.25;P<0.001)。经临床协变量调整的 LASSO 模型 AUC 为 0.775(95%CI,0.683-0.868)。

结论

基于容积 VAT 的放射组学和 3D-CNN 模型可为 CD 与 UC 的特征描述提供相当且有效的性能。

关键点

• CT 肠造影容积内脏脂肪组织提取的高信息量特征对鉴别 CD 与 UC 具有有效的诊断性能。

• 经临床协变量调整后,可区分 CD 与 UC 患者的调整后临床机器学习模型性能更强。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验