Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, CA, USA.
Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY, USA.
Nat Commun. 2024 Feb 29;15(1):1621. doi: 10.1038/s41467-024-45839-2.
Autophagy in eukaryotes functions to maintain homeostasis by degradation and recycling of long-lived and unwanted cellular materials. Autophagy plays important roles in pathogenicity of various fungal pathogens, suggesting that autophagy is a novel target for development of antifungal compounds. Here, we describe bioluminescence resonance energy transfer (BRET)-based high-throughput screening (HTS) strategy to identify compounds that inhibit fungal ATG4 cysteine protease-mediated cleavage of ATG8 that is critical for autophagosome formation. We identified ebselen (EB) and its analogs ebselen oxide (EO) and 2-(4-methylphenyl)-1,2-benzisothiazol-3(2H)-one (PT) as inhibitors of fungal pathogens Botrytis cinerea and Magnaporthe oryzae ATG4-mediated ATG8 processing. The EB and its analogs inhibit spore germination, hyphal development, and appressorium formation in Ascomycota pathogens, B. cinerea, M. oryzae, Sclerotinia sclerotiorum and Monilinia fructicola. Treatment with EB and its analogs significantly reduced fungal pathogenicity. Our findings provide molecular insights to develop the next generation of antifungal compounds by targeting autophagy in important fungal pathogens.
真核生物中的自噬通过降解和回收寿命长和不需要的细胞物质来维持体内平衡。自噬在各种真菌病原体的致病性中起重要作用,这表明自噬是开发抗真菌化合物的新靶标。在这里,我们描述了基于生物发光共振能量转移 (BRET) 的高通量筛选 (HTS) 策略,以鉴定抑制真菌 ATG4 半胱氨酸蛋白酶介导的 ATG8 切割的化合物,该切割对于自噬体形成至关重要。我们鉴定出 ebselen (EB) 及其类似物 ebselen 氧化物 (EO) 和 2-(4-甲基苯基)-1,2-苯并异噻唑-3(2H)-酮 (PT) 是真菌病原体 Botrytis cinerea 和 Magnaporthe oryzae ATG4 介导的 ATG8 加工的抑制剂。EB 及其类似物抑制子囊菌病原体 Botrytis cinerea、M. oryzae、Sclerotinia sclerotiorum 和 Monilinia fructicola 的孢子萌发、菌丝发育和附着胞形成。用 EB 和其类似物处理显著降低了真菌的致病性。我们的研究结果为通过靶向重要真菌病原体中的自噬来开发新一代抗真菌化合物提供了分子见解。