Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex, 66860, France.
Microbiome. 2024 Feb 29;12(1):42. doi: 10.1186/s40168-023-01738-0.
Global warming is causing large-scale disruption of cnidarian-Symbiodiniaceae symbioses fundamental to major marine ecosystems, such as coral reefs. However, the mechanisms by which heat stress perturbs these symbiotic partnerships remain poorly understood. In this context, the upside-down jellyfish Cassiopea has emerged as a powerful experimental model system.
We combined a controlled heat stress experiment with isotope labeling and correlative SEM-NanoSIMS imaging to show that host starvation is a central component in the chain of events that ultimately leads to the collapse of the Cassiopea holobiont. Heat stress caused an increase in catabolic activity and a depletion of carbon reserves in the unfed host, concurrent with a reduction in the supply of photosynthates from its algal symbionts. This state of host starvation was accompanied by pronounced in hospite degradation of algal symbionts, which may be a distinct feature of the heat stress response of Cassiopea. Interestingly, this loss of symbionts by degradation was concealed by body shrinkage of the starving animals, resulting in what could be referred to as "invisible" bleaching.
Overall, our study highlights the importance of the nutritional status in the heat stress response of the Cassiopea holobiont. Compared with other symbiotic cnidarians, the large mesoglea of Cassiopea, with its structural sugar and protein content, may constitute an energy reservoir capable of delaying starvation. It seems plausible that this anatomical feature at least partly contributes to the relatively high stress tolerance of these animals in rapidly warming oceans. Video Abstract.
全球变暖正在导致珊瑚礁等主要海洋生态系统中构成基础的刺胞动物-共生藻共生体发生大规模破坏。然而,热应激扰乱这些共生伙伴关系的机制仍知之甚少。在这种情况下,倒立水母 Cassiopea 已成为强大的实验模型系统。
我们结合了受控热应激实验、同位素标记和相关 SEM-NanoSIMS 成像,表明宿主饥饿是导致 Cassiopea 整体生物群最终崩溃的一系列事件中的核心组成部分。热应激导致未喂食宿主的分解代谢活性增加和碳储备枯竭,同时其藻类共生体提供的光合产物减少。这种宿主饥饿状态伴随着藻类共生体的明显驻留降解,这可能是 Cassiopea 对热应激反应的一个独特特征。有趣的是,这种共生体通过降解而丧失被饥饿动物的身体收缩所掩盖,导致所谓的“隐形”白化。
总的来说,我们的研究强调了营养状况在 Cassiopea 整体生物群对热应激反应中的重要性。与其他共生刺胞动物相比,Cassiopea 的大中胶层具有结构糖和蛋白质含量,可能构成一个能够延缓饥饿的能量储备库。这种解剖特征至少部分有助于这些动物在快速变暖的海洋中相对较高的应激耐受性,这似乎是合理的。视频摘要。