Suppr超能文献

海草介导的根际氧化还原梯度与固氮生物驱动的氨积累有关。

Seagrass-mediated rhizosphere redox gradients are linked with ammonium accumulation driven by diazotrophs.

机构信息

Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.

Department of Crop Sciences, Institute of Agronomy, University of Natural Resources and Life Sciences Vienna, Tulln an der Donau, Austria.

出版信息

Microbiol Spectr. 2024 Apr 2;12(4):e0333523. doi: 10.1128/spectrum.03335-23. Epub 2024 Mar 1.

Abstract

UNLABELLED

Seagrasses can enhance nutrient mobilization in their rhizosphere via complex interactions with sediment redox conditions and microbial populations. Yet, limited knowledge exists on how seagrass-derived rhizosphere dynamics affect nitrogen cycling. Using optode and gel-sampler-based chemical imaging, we show that radial O loss (ROL) from rhizomes and roots leads to the formation of redox gradients around below-ground tissues of seagrass (), which are co-localized with regions of high ammonium concentrations in the rhizosphere. Combining such chemical imaging with fine-scale sampling for microbial community and gene expression analyses indicated that multiple biogeochemical pathways and microbial players can lead to high ammonium concentration within the oxidized regions of the seagrass rhizosphere. Symbiotic N-fixing bacteria () were particularly abundant and expressed the diazotroph functional marker gene in rhizosphere areas with high ammonium concentrations. Such an association between and can facilitate ammonium mobilization, the preferred nitrogen source for seagrasses, enhancing seagrass productivity within nitrogen-limited environments. ROL also caused strong gradients of sulfide at anoxic/oxic interfaces in rhizosphere areas, where we found enhanced transcription by sulfate-reducing bacteria. Furthermore, we found a high abundance of methylotrophic and sulfide-oxidizing bacteria in rhizosphere areas, where O was released from seagrass rhizomes and roots. These bacteria could play a beneficial role for the plants in terms of their methane and sulfide oxidation, as well as their formation of growth factors and phytohormones. ROL from below-ground tissues of seagrass, thus, seems crucial for ammonium production in the rhizosphere via stimulation of multiple diazotrophic associations.

IMPORTANCE

Seagrasses are important marine habitats providing several ecosystem services in coastal waters worldwide, such as enhancing marine biodiversity and mitigating climate change through efficient carbon sequestration. Notably, the fitness of seagrasses is affected by plant-microbe interactions. However, these microscale interactions are challenging to study and large knowledge gaps prevail. Our study shows that redox microgradients in the rhizosphere of seagrass select for a unique microbial community that can enhance the ammonium availability for seagrass. We provide first experimental evidence that , including the symbiotic N-fixing bacteria , can contribute to the bacterial ammonium production in the seagrass rhizosphere. The release of O from rhizomes and roots also caused gradients of sulfide in rhizosphere areas with enhanced nifH transcription by sulfate-reducing bacteria. O release from seagrass root systems thus seems crucial for ammonium production in the rhizosphere via stimulation of multiple diazotrophic associations.

摘要

未加标签

海草通过与沉积物氧化还原条件和微生物种群的复杂相互作用,可增强其根际养分的流动性。然而,关于海草衍生的根际动态如何影响氮循环,我们的了解还很有限。本研究利用光纤氧探头和凝胶取样器的化学成像技术,表明海草根茎和根系的径向耗氧(ROL)会导致地下组织周围形成氧化还原梯度(),这些梯度与根际中高铵浓度区域相吻合。将这种化学成像与微生物群落和基因表达分析的精细采样相结合,表明多种生物地球化学途径和微生物参与者可导致海草根际氧化区域内的高铵浓度。共生固氮细菌()在高铵浓度的根际区域特别丰富,并表达固氮功能标记基因 。这种与 的关联可以促进铵的流动,而铵是海草的首选氮源,可在氮限制环境中提高海草的生产力。ROL 还会在根际区域缺氧/需氧界面引起强烈的硫化物梯度,在这些区域中,硫酸盐还原菌的 转录增强。此外,我们在海草根际区域发现了大量的甲基营养型和硫氧化型细菌,这些细菌的 O 从海草的根茎和根系中释放出来。这些细菌可以通过其甲烷和硫化物的氧化以及生长因子和植物激素的形成,对植物起到有益的作用。因此,海草地下组织的 ROL 通过刺激多种固氮关联,似乎对根际中铵的产生至关重要。

意义

海草是全球沿海水域重要的海洋栖息地,提供了多种生态系统服务,例如通过高效的碳固存来增强海洋生物多样性和减缓气候变化。值得注意的是,海草的适应性受到植物-微生物相互作用的影响。然而,这些微观相互作用很难研究,并且存在很大的知识空白。本研究表明,海草根际的氧化还原微梯度选择了独特的微生物群落,可增强海草的铵可用性。我们提供了第一个实验证据表明,包括共生固氮细菌在内的 可促进海草根际的细菌铵产生。海草根茎和根系的 O 释放也会导致根际区域的硫化物梯度增加,硫酸盐还原菌的 nifH 转录增强。因此,海草根系系统的 O 释放似乎通过刺激多种固氮关联,对根际中铵的产生至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e720/10986515/e4c7fdd877a0/spectrum.03335-23.f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验