Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States.
Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States.
Biochem Pharmacol. 2024 Apr;222:116103. doi: 10.1016/j.bcp.2024.116103. Epub 2024 Feb 28.
Liver is a major organ that metabolizes sulfur amino acids cysteine, which is the substrate for the synthesis of many essential cellular molecules including GSH, taurine, and coenzyme A. Bile acid-activated farnesoid x receptor (FXR) inhibits cysteine dioxygenase type 1 (CDO1), which mediates hepatic cysteine catabolism and taurine synthesis. To define the impact of bile acid inhibition of CDO1 on hepatic sulfur amino acid metabolism and antioxidant capacity, we developed hepatocyte-specific CDO1 knockout mice (Hep-CDO1 KO) and hepatocyte specific CDO1 transgenic mice (Hep-CDO1 Tg). Liver metabolomics revealed that genetic deletion of hepatic CDO1 reduced de novo taurine synthesis but had no impact on hepatic taurine abundance or bile acid conjugation. Consistent with reduced cysteine catabolism, Hep-CDO1 KO mice showed increased hepatic cysteine abundance but unaltered methionine cycle intermediates and coenzyme A synthesis. Upon acetaminophen overdose, Hep-CDO1 KO mice showed increased GSH synthesis capacity and alleviated liver injury. In contrast, hepatic CDO1 overexpression in Hep-CDO1 Tg mice stimulated hepatic cysteine to taurine conversion, resulting in reduced hepatic cysteine abundance. However, Hep-CDO1 Tg mice and WT showed similar susceptibility to acetaminophen-induced liver injury. Hep-CDO1 Tg mice showed similar hepatic taurine and coenzyme A compared to WT mice. In summary, these findings suggest that bile acid and FXR signaling inhibition of CDO1-mediated hepatic cysteine catabolism preferentially modulates hepatic GSH synthesis capacity and antioxidant defense, but has minimal effect on hepatic taurine and coenzyme A abundance. Repression of hepatic CDO1 may contribute to the hepatoprotective effects of FXR activation under certain pathologic conditions.
肝脏是一种主要的器官,可代谢含硫氨基酸半胱氨酸,半胱氨酸是合成包括 GSH、牛磺酸和辅酶 A 在内的许多必需细胞分子的底物。胆汁酸激活的法尼醇 X 受体 (FXR) 抑制半胱氨酸双加氧酶 1 (CDO1),后者介导肝脏半胱氨酸分解代谢和牛磺酸合成。为了确定胆汁酸抑制 CDO1 对肝脏含硫氨基酸代谢和抗氧化能力的影响,我们开发了肝细胞特异性 CDO1 敲除小鼠 (Hep-CDO1 KO) 和肝细胞特异性 CDO1 转基因小鼠 (Hep-CDO1 Tg)。肝脏代谢组学显示,肝脏 CDO1 的遗传缺失减少了牛磺酸的从头合成,但对肝脏牛磺酸丰度或胆汁酸结合没有影响。与半胱氨酸分解代谢减少一致,Hep-CDO1 KO 小鼠表现出肝脏半胱氨酸丰度增加,但蛋氨酸循环中间产物和辅酶 A 合成未改变。在对乙酰氨基酚过量的情况下,Hep-CDO1 KO 小鼠显示出增加的 GSH 合成能力并减轻了肝损伤。相比之下,在 Hep-CDO1 Tg 小鼠中过表达肝 CDO1 刺激了肝半胱氨酸向牛磺酸的转化,导致肝半胱氨酸丰度降低。然而,Hep-CDO1 Tg 小鼠和 WT 对乙酰氨基酚诱导的肝损伤的易感性相似。Hep-CDO1 Tg 小鼠的肝脏牛磺酸和辅酶 A与 WT 小鼠相似。总之,这些发现表明,胆汁酸和 FXR 信号抑制 CDO1 介导的肝半胱氨酸分解代谢优先调节肝 GSH 合成能力和抗氧化防御,但对半胱氨酸和辅酶 A 的肝脏丰度影响最小。肝 CDO1 的抑制可能有助于 FXR 激活在某些病理条件下的肝保护作用。