De Sloovere Dries, Mylavarapu Satish Kumar, D'Haen Jan, Thersleff Thomas, Jaworski Aleksander, Grins Jekabs, Svensson Gunnar, Stoyanova Radostina, Jøsang Leif Olav, Prakasha Kunkanadu Rajappa, Merlo Maximiliano, Martínez Elías, Nel-Lo Pascual Marc, Jacas Biendicho Jordi, Van Bael Marlies K, Hardy An
Institute for Materials Research (imo-Imomec), UHasselt and Imec, Agoralaan, building D, Diepenbeek, 3590, Belgium.
EnergyVille, Thor Park 8320, Genk, 3600, Belgium.
Small. 2024 Aug;20(31):e2400876. doi: 10.1002/smll.202400876. Epub 2024 Mar 1.
Lithium-rich, cobalt-free oxides are promising potential positive electrode materials for lithium-ion batteries because of their high energy density, lower cost, and reduced environmental and ethical concerns. However, their commercial breakthrough is hindered because of their subpar electrochemical stability. This work studies the effect of aluminum doping on LiNiMnO as a lithium-rich, cobalt-free layered oxide. Al doping suppresses voltage fade and improves the capacity retention from 46% for LiNiMnO to 67% for LiNiMnAlO after 250 cycles at 0.2 C. The undoped material has a monoclinic LiMnO-type structure with spinel on the particle edges. In contrast, Al-doped materials (LiNiMnAlO) consist of a more stable rhombohedral phase at the particle edges, with a monoclinic phase core. For this core-shell structure, the formation of Mn is suppressed along with the material's decomposition to a disordered spinel, and the amount of the rhombohedral phase content increases during galvanostatic cycling. Whereas previous studies generally provided qualitative insight into the degradation mechanisms during electrochemical cycling, this work provides quantitative information on the stabilizing effect of the rhombohedral shell in the doped sample. As such, this study provides fundamental insight into the mechanisms through which Al doping increases the electrochemical stability of lithium-rich cobalt-free layered oxides.
富锂无钴氧化物因其高能量密度、低成本以及减少的环境和伦理问题,是锂离子电池有前景的潜在正极材料。然而,由于其电化学稳定性欠佳,其商业突破受到阻碍。这项工作研究了铝掺杂对LiNiMnO这种富锂无钴层状氧化物的影响。在0.2 C下循环250次后,铝掺杂抑制了电压衰减,并将容量保持率从LiNiMnO的46%提高到LiNiMnAlO的67%。未掺杂的材料具有单斜LiMnO型结构,颗粒边缘有尖晶石。相比之下,铝掺杂材料(LiNiMnAlO)在颗粒边缘由更稳定的菱面体相组成,核心为单斜相。对于这种核壳结构,Mn的形成以及材料分解为无序尖晶石的过程受到抑制,并且在恒电流循环过程中菱面体相含量增加。虽然先前的研究通常对电化学循环过程中的降解机制提供了定性见解,但这项工作提供了关于掺杂样品中菱面体壳层稳定作用的定量信息。因此,本研究提供了关于铝掺杂提高富锂无钴层状氧化物电化学稳定性机制的基本见解。