Suppr超能文献

QAL-BP:一种用于装箱问题的增强拉格朗日量子方法。

QAL-BP: an augmented Lagrangian quantum approach for bin packing.

作者信息

Cellini Lorenzo, Macaluso Antonio, Lombardi Michele

机构信息

Department of Computer Science and Engineering, University of Bologna, Bologna, Italy.

Agents and Simulated Reality Department, German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany.

出版信息

Sci Rep. 2024 Mar 1;14(1):5142. doi: 10.1038/s41598-023-50540-3.

Abstract

The bin packing is a well-known NP-Hard problem in the domain of artificial intelligence, posing significant challenges in finding efficient solutions. Conversely, recent advancements in quantum technologies have shown promising potential for achieving substantial computational speedup, particularly in certain problem classes, such as combinatorial optimization. In this study, we introduce QAL-BP, a novel Quadratic Unconstrained Binary Optimization (QUBO) formulation designed specifically for bin packing and suitable for quantum computation. QAL-BP utilizes the Augmented Lagrangian method to incorporate the bin packing constraints into the objective function while also facilitating an analytical estimation of heuristic, but empirically robust, penalty multipliers. This approach leads to a more versatile and generalizable model that eliminates the need for empirically calculating instance-dependent Lagrangian coefficients, a requirement commonly encountered in alternative QUBO formulations for similar problems. To assess the effectiveness of our proposed approach, we conduct experiments on a set of bin packing instances using a real Quantum Annealing device. Additionally, we compare the results with those obtained from two different classical solvers, namely simulated annealing and Gurobi. The experimental findings not only confirm the correctness of the proposed formulation, but also demonstrate the potential of quantum computation in effectively solving the bin packing problem, particularly as more reliable quantum technology becomes available.

摘要

装箱问题是人工智能领域中一个著名的NP难问题,在寻找有效解决方案方面面临重大挑战。相反,量子技术的最新进展显示出在实现大幅计算加速方面的潜力,特别是在某些问题类别中,如组合优化。在本研究中,我们引入了QAL-BP,这是一种专门为装箱问题设计的新型二次无约束二元优化(QUBO)公式,适用于量子计算。QAL-BP利用增广拉格朗日方法将装箱约束纳入目标函数,同时还便于对启发式但经验上稳健的惩罚乘数进行解析估计。这种方法导致了一个更通用和可推广的模型,消除了对经验计算依赖于实例的拉格朗日系数的需求,这是类似问题的替代QUBO公式中常见的要求。为了评估我们提出的方法的有效性,我们使用真实的量子退火设备对一组装箱实例进行了实验。此外,我们将结果与从两种不同的经典求解器(即模拟退火和Gurobi)获得的结果进行了比较。实验结果不仅证实了所提出公式的正确性,还展示了量子计算在有效解决装箱问题方面的潜力,特别是随着更可靠的量子技术的出现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92ca/10907365/11c9bb2883d4/41598_2023_50540_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验