Suppr超能文献

整合废水和随机患病率调查数据以进行国家 COVID 监测。

Integrating wastewater and randomised prevalence survey data for national COVID surveillance.

机构信息

Applied Statistics Research Group, Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.

Turing-RSS Health Data Lab, London, UK.

出版信息

Sci Rep. 2024 Mar 1;14(1):5124. doi: 10.1038/s41598-024-55752-9.

Abstract

During the COVID-19 pandemic, studies in a number of countries have shown how wastewater can be used as an efficient surveillance tool to detect outbreaks at much lower cost than traditional prevalence surveys. In this study, we consider the utilisation of wastewater data in the post-pandemic setting, in which collection of health data via national randomised prevalence surveys will likely be run at a reduced scale; hence an affordable ongoing surveillance system will need to combine sparse prevalence data with non-traditional disease metrics such as wastewater measurements in order to estimate disease progression in a cost-effective manner. Here, we use data collected during the pandemic to model the dynamic relationship between spatially granular wastewater viral load and disease prevalence. We then use this relationship to nowcast local disease prevalence under the scenario that (i) spatially granular wastewater data continue to be collected; (ii) direct measurements of prevalence are only available at a coarser spatial resolution, for example at national or regional scale. The results from our cross-validation study demonstrate the added value of wastewater data in improving nowcast accuracy and reducing nowcast uncertainty. Our results also highlight the importance of incorporating prevalence data at a coarser spatial scale when nowcasting prevalence at fine spatial resolution, calling for the need to maintain some form of reduced-scale national prevalence surveys in non-epidemic periods. The model framework is disease-agnostic and could therefore be adapted to different diseases and incorporated into a multiplex surveillance system for early detection of emerging local outbreaks.

摘要

在 COVID-19 大流行期间,许多国家的研究表明,废水可作为一种有效的监测工具,以较低的成本检测疫情爆发,其效率远高于传统的流行率调查。在本研究中,我们考虑在疫情后时期利用废水数据,在该时期,通过全国随机流行率调查收集健康数据的规模可能会缩小;因此,需要一个负担得起的持续监测系统,将稀疏的流行率数据与非传统疾病指标(如废水测量值)相结合,以经济有效的方式估计疾病进展。在这里,我们使用大流行期间收集的数据来模拟空间粒度废水病毒载量与疾病流行率之间的动态关系。然后,我们在以下情况下使用该关系进行本地疾病流行率的实时预测:(i)继续收集空间粒度废水数据;(ii)仅以较粗的空间分辨率(例如,在国家或地区层面)获得流行率的直接测量值。我们的交叉验证研究结果表明,废水数据在提高实时预测准确性和降低实时预测不确定性方面具有附加价值。我们的研究结果还强调了在以精细空间分辨率实时预测流行率时,将粗空间分辨率的流行率数据纳入的重要性,这呼吁在非流行时期,需要以某种形式维持规模缩小的全国流行率调查。该模型框架与疾病无关,因此可以适用于不同的疾病,并纳入用于早期检测新出现的局部疫情的多重监测系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23f6/10907376/d5e4d4cb3531/41598_2024_55752_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验