Domain Therapeutics North America Inc., 7171 Frederick-Banting, Saint-Laurent, Quebec, H4S 1Z9, Canada.
Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, University of Montreal, 2950 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada.
Commun Biol. 2024 Mar 1;7(1):250. doi: 10.1038/s42003-024-05965-5.
Mutations of receptor tyrosine kinases (RTKs) are associated with the development of many cancers by modifying receptor signaling and contributing to drug resistance in clinical settings. We present enhanced bystander bioluminescence resonance energy transfer-based biosensors providing new insights into RTK biology and pharmacology critical for the development of more effective RTK-targeting drugs. Distinct SH2-specific effector biosensors allow for real-time and spatiotemporal monitoring of signal transduction pathways engaged upon RTK activation. Using EGFR as a model, we demonstrate the capacity of these biosensors to differentiate unique signaling signatures, with EGF and Epiregulin ligands displaying differences in efficacy, potency, and responses within different cellular compartments. We further demonstrate that EGFR single point mutations found in Glioblastoma or non-small cell lung cancer, impact the constitutive activity of EGFR and response to tyrosine kinase inhibitor. The BRET-based biosensors are compatible with microscopy, and more importantly characterize the next generation of therapeutics directed against RTKs.
受体酪氨酸激酶(RTKs)的突变通过改变受体信号转导并导致临床耐药性,与许多癌症的发生有关。我们提出了增强的旁观者生物发光共振能量转移(BRET)生物传感器,为 RTK 生物学和药理学提供了新的见解,这对于开发更有效的 RTK 靶向药物至关重要。独特的 SH2 特异性效应器生物传感器可实时和时空监测 RTK 激活后参与的信号转导途径。使用 EGFR 作为模型,我们证明了这些生物传感器区分独特信号特征的能力,其中 EGF 和 Epiregulin 配体在不同细胞区室中的功效、效力和反应方面存在差异。我们进一步证明,在胶质母细胞瘤或非小细胞肺癌中发现的 EGFR 单点突变会影响 EGFR 的组成性活性和对酪氨酸激酶抑制剂的反应。基于 BRET 的生物传感器与显微镜兼容,更重要的是,其可对针对 RTK 的下一代治疗药物进行特征描述。