Suppr超能文献

NUM 评分:用于尿路感染后个体化影像学检查的临床分析模型。

NUM-score: A clinical-analytical model for personalised imaging after urinary tract infections.

机构信息

Pediatric Emergency Department, La Paz University Hospital, Madrid, Spain.

Urology Department, Clínica Universidad de Navarra, Madrid, Spain.

出版信息

Acta Paediatr. 2024 Jun;113(6):1426-1434. doi: 10.1111/apa.17191. Epub 2024 Mar 1.

Abstract

AIM

To identify predictive variables and construct a predictive model along with a decision algorithm to identify nephrourological malformations (NUM) in children with febrile urinary tract infections (fUTI), enhancing the efficiency of imaging diagnostics.

METHODS

We performed a retrospective study of patients aged <16 years with fUTI at the Emergency Department with subsequent microbiological confirmation between 2014 and 2020. The follow-up period was at least 2 years. Patients were categorised into two groups: 'NUM' with previously known nephrourological anomalies or those diagnosed during the follow-up and 'Non-NUM' group.

RESULTS

Out of 836 eligible patients, 26.8% had underlying NUMs. The study identified six key risk factors: recurrent UTIs, non-Escherichia coli infection, moderate acute kidney injury, procalcitonin levels >2 μg/L, age <3 months at the first UTI and fUTIs beyond 24 months. These risk factors were used to develop a predictive model with an 80.7% accuracy rate and elaborate a NUM-score classifying patients into low, moderate and high-risk groups, with a 10%, 35% and 93% prevalence of NUM. We propose an algorithm for approaching imaging tests following a fUTI.

CONCLUSION

Our predictive score may help physicians decide about imaging tests. However, prospective validation of the model will be necessary before its application in daily clinical practice.

摘要

目的

确定预测变量,构建预测模型和决策算法,以识别儿童发热性尿路感染(fUTI)中的肾泌尿畸形(NUM),提高影像学诊断的效率。

方法

我们对 2014 年至 2020 年期间在急诊科就诊的年龄<16 岁的 fUTI 患者进行了回顾性研究,这些患者有后续的微生物学确认。随访期至少为 2 年。将患者分为两组:“NUM”组为既往已知肾泌尿异常或在随访期间诊断的患者,“非-NUM”组为无 NUM 的患者。

结果

在 836 名符合条件的患者中,26.8%存在潜在 NUM。研究确定了六个关键风险因素:复发性 UTIs、非大肠埃希菌感染、中度急性肾损伤、降钙素原水平>2μg/L、首次 UTI 时年龄<3 个月和 fUTI 持续时间超过 24 个月。这些风险因素用于开发预测模型,其准确率为 80.7%,并详细制定了 NUM 评分,将患者分为低、中和高危组,NUM 的患病率分别为 10%、35%和 93%。我们提出了一种 fUTI 后进行影像学检查的方法。

结论

我们的预测评分可能有助于医生决定是否进行影像学检查。然而,在将该模型应用于日常临床实践之前,需要进行前瞻性验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验