Department of Physics, University of Helsinki, 00014 Helsinki, Finland.
Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany.
J Phys Chem B. 2024 Mar 14;128(10):2304-2316. doi: 10.1021/acs.jpcb.3c07421. Epub 2024 Mar 2.
Classical molecular dynamics (MD) simulations provide unmatched spatial and time resolution of protein structure and function. However, the accuracy of MD simulations often depends on the quality of force field parameters and the time scale of sampling. Another limitation of conventional MD simulations is that the protonation states of titratable amino acid residues remain fixed during simulations, even though protonation state changes coupled to conformational dynamics are central to protein function. Due to the uncertainty in selecting protonation states, classical MD simulations are sometimes performed with all amino acids modeled in their standard charged states at pH 7. Here, we performed and analyzed classical MD simulations on high-resolution cryo-EM structures of two large membrane proteins that transfer protons by catalyzing protonation/deprotonation reactions. In simulations performed with titratable amino acids modeled in their standard protonation (charged) states, the structure diverges far from its starting conformation. In comparison, MD simulations performed with predetermined protonation states of amino acid residues reproduce the structural conformation, protein hydration, and protein-water and protein-protein interactions of the structure much better. The results support the notion that it is crucial to perform basic protonation state calculations, especially on structures where protonation changes play an important functional role, prior to the launch of any conventional MD simulations. Furthermore, the combined approach of fast protonation state prediction and MD simulations can provide valuable information about the charge states of amino acids in the cryo-EM sample. Even though accurate prediction of protonation states in proteinaceous environments currently remains a challenge, we introduce an approach of combining p prediction with cryo-EM density map analysis that helps in improving not only the protonation state predictions but also the atomic modeling of density data.
经典分子动力学 (MD) 模拟提供了无与伦比的蛋白质结构和功能的空间和时间分辨率。然而,MD 模拟的准确性通常取决于力场参数的质量和采样的时间尺度。传统 MD 模拟的另一个限制是,在模拟过程中,可滴定氨基酸残基的质子化状态保持固定,即使与构象动力学相关的质子化状态变化是蛋白质功能的核心。由于选择质子化状态的不确定性,经典 MD 模拟有时会在 pH 7 时使用所有氨基酸以其标准带电状态进行模拟。在这里,我们对两个通过催化质子化/去质子化反应来转移质子的大型膜蛋白的高分辨率冷冻电镜结构进行了经典 MD 模拟和分析。在带有可滴定氨基酸以其标准质子化(带电)状态建模的模拟中,结构与起始构象相差甚远。相比之下,使用氨基酸残基的预定质子化状态进行 MD 模拟可以更好地再现结构的构象、蛋白质水合作用以及蛋白质-水和蛋白质-蛋白质相互作用。结果支持这样一种观点,即在进行任何常规 MD 模拟之前,进行基本质子化状态计算至关重要,特别是对于质子化变化起重要功能作用的结构。此外,快速质子化状态预测和 MD 模拟的组合方法可以提供有关冷冻电镜样品中氨基酸的电荷状态的有价值信息。尽管目前在蛋白质环境中准确预测质子化状态仍然是一个挑战,但我们提出了一种结合 p 预测与冷冻电镜密度图分析的方法,该方法不仅有助于提高质子化状态预测的准确性,还有助于提高密度数据的原子建模。
Biochim Biophys Acta Bioenerg. 2025-1-1
J Chem Theory Comput. 2020-4-1
Elife. 2024-7-23
Biochim Biophys Acta. 2016-6
Front Mol Biosci. 2025-2-11
Biophys J. 2024-12-17
Commun Chem. 2023-5-31
Biochemistry. 2023-5-16
Living J Comput Mol Sci. 2022
Curr Opin Struct Biol. 2022-12
J Chem Theory Comput. 2022-12-13