Department of Structural Biology, Max Planck Institute of Biophysics, 60438, Frankfurt am Main, Germany.
Graduate School of Medical Life Science, Yokohama City University, 230-0045, Kanagawa, Japan.
Nat Commun. 2022 Oct 14;13(1):6091. doi: 10.1038/s41467-022-33640-y.
Multiple resistance and pH adaptation (Mrp) cation/proton antiporters are essential for growth of a variety of halophilic and alkaliphilic bacteria under stress conditions. Mrp-type antiporters are closely related to the membrane domain of respiratory complex I. We determined the structure of the Mrp antiporter from Bacillus pseudofirmus by electron cryo-microscopy at 2.2 Å resolution. The structure resolves more than 99% of the sidechains of the seven membrane subunits MrpA to MrpG plus 360 water molecules, including ~70 in putative ion translocation pathways. Molecular dynamics simulations based on the high-resolution structure revealed details of the antiport mechanism. We find that switching the position of a histidine residue between three hydrated pathways in the MrpA subunit is critical for proton transfer that drives gated trans-membrane sodium translocation. Several lines of evidence indicate that the same histidine-switch mechanism operates in respiratory complex I.
多种耐药性和 pH 适应(Mrp)阳离子/质子反向转运体对于各种嗜盐菌和嗜碱菌在应激条件下的生长至关重要。Mrp 型反向转运体与呼吸复合物 I 的膜结构域密切相关。我们通过电子冷冻显微镜在 2.2Å 的分辨率下确定了来自芽孢杆菌的 Mrp 反向转运体的结构。该结构解析了超过 99%的膜亚基 MrpA 到 MrpG 的侧链,加上 360 个水分子,其中包括 ~70 个在假定的离子转运途径中。基于高分辨率结构的分子动力学模拟揭示了反向转运机制的细节。我们发现,MrpA 亚基中三个水合途径之间的一个组氨酸残基的位置切换对于驱动门控跨膜钠离子转运的质子转移至关重要。有几条证据表明,相同的组氨酸开关机制在呼吸复合物 I 中起作用。