Centre for Computational Science, University College London, London, WC1H 0AJ, UK.
Department of Biological Sciences, Birkbeck, University of London, London, WC1E 7HX, UK.
Nat Commun. 2023 Jun 19;14(1):3630. doi: 10.1038/s41467-023-38681-5.
DNA can be folded into rationally designed, unique, and functional materials. To fully realise the potential of these DNA materials, a fundamental understanding of their structure and dynamics is necessary, both in simple solvents as well as more complex and diverse anisotropic environments. Here we analyse an archetypal six-duplex DNA nanoarchitecture with single-particle cryo-electron microscopy and molecular dynamics simulations in solvents of tunable ionic strength and within the anisotropic environment of biological membranes. Outside lipid bilayers, the six-duplex bundle lacks the designed symmetrical barrel-type architecture. Rather, duplexes are arranged in non-hexagonal fashion and are disorted to form a wider, less elongated structure. Insertion into lipid membranes, however, restores the anticipated barrel shape due to lateral duplex compression by the bilayer. The salt concentration has a drastic impact on the stability of the inserted barrel-shaped DNA nanopore given the tunable electrostatic repulsion between the negatively charged duplexes. By synergistically combining experiments and simulations, we increase fundamental understanding into the environment-dependent structural dynamics of a widely used nanoarchitecture. This insight will pave the way for future engineering and biosensing applications.
DNA 可以折叠成合理设计的、独特的、功能化的材料。为了充分发挥这些 DNA 材料的潜力,我们需要深入了解它们在简单溶剂以及更复杂和多样的各向异性环境中的结构和动力学。在这里,我们通过单颗粒低温电子显微镜和分子动力学模拟分析了一个典型的六聚体 DNA 纳米结构,该结构在可调节离子强度的溶剂中和在生物膜的各向异性环境中进行研究。在脂质双层之外,六聚体束缺乏设计的对称桶型结构。相反,双螺旋以非六边形的方式排列,并被扭曲成更宽、更长的结构。然而,插入脂质膜会由于双层对侧的双螺旋的压缩而恢复预期的桶形。鉴于带负电荷的双螺旋之间的可调静电排斥,盐浓度对插入桶形 DNA 纳米孔的稳定性有很大影响。通过协同结合实验和模拟,我们增加了对广泛使用的纳米结构的环境依赖性结构动力学的基本理解。这一见解将为未来的工程和生物传感应用铺平道路。
Acc Chem Res. 2014-6-3
J Am Chem Soc. 2021-6-9
Nat Commun. 2017-3-20
Nano Lett. 2016-6-29
J Struct Biol. 2018-4-24
Nat Struct Mol Biol. 2023-2
Mater Today Bio. 2025-7-26
J Am Chem Soc. 2022-3-16
ACS Nano. 2021-10-26
Nat Commun. 2021-8-17
J Chem Theory Comput. 2021-8-10
Nat Mater. 2021-9
Nat Methods. 2021-6
Philos Trans A Math Phys Eng Sci. 2021-5-17
Philos Trans A Math Phys Eng Sci. 2021-5-17