文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

工程化微血管网络模型的构建技术及其生物医学应用。

Technology for the formation of engineered microvascular network models and their biomedical applications.

作者信息

Li He, Shang Yucheng, Zeng Jinfeng, Matsusaki Michiya

机构信息

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Osaka University, Suita, Osaka, Japan.

出版信息

Nano Converg. 2024 Mar 2;11(1):10. doi: 10.1186/s40580-024-00416-7.


DOI:10.1186/s40580-024-00416-7
PMID:38430377
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10908775/
Abstract

Tissue engineering and regenerative medicine have made great progress in recent decades, as the fields of bioengineering, materials science, and stem cell biology have converged, allowing tissue engineers to replicate the structure and function of various levels of the vascular tree. Nonetheless, the lack of a fully functional vascular system to efficiently supply oxygen and nutrients has hindered the clinical application of bioengineered tissues for transplantation. To investigate vascular biology, drug transport, disease progression, and vascularization of engineered tissues for regenerative medicine, we have analyzed different approaches for designing microvascular networks to create models. This review discusses recent advances in the field of microvascular tissue engineering, explores potential future challenges, and offers methodological recommendations.

摘要

近几十年来,组织工程与再生医学取得了巨大进展,因为生物工程、材料科学和干细胞生物学领域相互融合,使组织工程师能够复制各级血管树的结构和功能。尽管如此,缺乏一个能有效供应氧气和营养物质的全功能血管系统,阻碍了生物工程组织在移植方面的临床应用。为了研究血管生物学、药物转运、疾病进展以及用于再生医学的工程组织的血管化,我们分析了设计微血管网络以创建模型的不同方法。本综述讨论了微血管组织工程领域的最新进展,探讨了未来可能面临的挑战,并提供了方法学建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d8/10908775/76b458baf858/40580_2024_416_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d8/10908775/3969a8afe580/40580_2024_416_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d8/10908775/50a706cc0f57/40580_2024_416_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d8/10908775/a68df269bfea/40580_2024_416_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d8/10908775/b1189972fc4d/40580_2024_416_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d8/10908775/76b458baf858/40580_2024_416_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d8/10908775/3969a8afe580/40580_2024_416_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d8/10908775/50a706cc0f57/40580_2024_416_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d8/10908775/a68df269bfea/40580_2024_416_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d8/10908775/b1189972fc4d/40580_2024_416_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d8/10908775/76b458baf858/40580_2024_416_Fig5_HTML.jpg

相似文献

[1]
Technology for the formation of engineered microvascular network models and their biomedical applications.

Nano Converg. 2024-3-2

[2]
From arteries to capillaries: approaches to engineering human vasculature.

Adv Funct Mater. 2020-9-10

[3]
Regenerative medicine as applied to solid organ transplantation: current status and future challenges.

Transpl Int. 2010-11-10

[4]
Engineering blood vessels and vascularized tissues: technology trends and potential clinical applications.

Clin Sci (Lond). 2019-5-14

[5]
Cell-microenvironment interactions and architectures in microvascular systems.

Biotechnol Adv. 2016-11-1

[6]
Engineering the multiscale complexity of vascular networks.

Nat Rev Mater. 2022

[7]
Bioprinting for vascular and vascularized tissue biofabrication.

Acta Biomater. 2017-3-15

[8]
Upgrading prevascularization in tissue engineering: A review of strategies for promoting highly organized microvascular network formation.

Acta Biomater. 2019-3-13

[9]
Regenerative medicine for childhood gastrointestinal diseases.

Best Pract Res Clin Gastroenterol. 2022

[10]
Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix.

Acta Biomater. 2015-11

引用本文的文献

[1]
Design and Development of a Real-Time Pressure-Driven Monitoring System for Microvasculature Formation.

Biomimetics (Basel). 2025-8-1

[2]
Microinjection molded microwell array-based portable digital PCR system for the detection of infectious respiratory viruses.

Nano Converg. 2025-3-21

[3]
Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering.

Mater Today Bio. 2024-10-2

本文引用的文献

[1]
Microporous Polylactic Acid Scaffolds Enable Fluorescence-Based Perfusion Imaging of Intrinsic In Vivo Vascularization.

Int J Mol Sci. 2023-10-1

[2]
Development of a perfusable, hierarchical microvasculature-on-a-chip model.

Lab Chip. 2023-10-10

[3]
Analysis of flow-induced transcriptional response and cell alignment of different sources of endothelial cells used in vascular tissue engineering.

Sci Rep. 2023-9-1

[4]
Physiological oxygen conditions enhance the angiogenic properties of extracellular vesicles from human mesenchymal stem cells.

Stem Cell Res Ther. 2023-8-23

[5]
Macro, Micro, and Everything in Between. Bridging the Gap: A Vision Toward the Creation of Multiscale Vascular Networks.

Adv Biol (Weinh). 2023-12

[6]
Assessing non-synthetic crosslinkers in biomaterial inks based on polymers of marine origin to increase the shape fidelity in 3D extrusion printing.

Biomed Mater. 2023-8-11

[7]
A new 3D-printed polylactic acid-bioglass composite for bone tissue engineering induces angiogenesis and .

Int J Bioprint. 2023-5-11

[8]
Construction of enzyme digested holes on hydrogel surface inspired by cell migration processes.

Biochem Biophys Res Commun. 2023-9-24

[9]
Pre-selection of fibroblast subsets prompts prevascularization of tissue engineered skin analogues.

Biomater Sci. 2023-7-25

[10]
Computational simulation-based comparative analysis of standard 3D printing and conical nozzles for pneumatic and piston-driven bioprinting.

Int J Bioprint. 2023-4-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索