Suppr超能文献

用于微脉管系统形成的实时压力驱动监测系统的设计与开发

Design and Development of a Real-Time Pressure-Driven Monitoring System for Microvasculature Formation.

作者信息

Suresh Gayathri, Pearson Bradley E, Schreiner Ryan, Lin Yang, Rafii Shahin, Rabbany Sina Y

机构信息

DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY 11549, USA.

Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.

出版信息

Biomimetics (Basel). 2025 Aug 1;10(8):501. doi: 10.3390/biomimetics10080501.

Abstract

Microfluidic platforms offer a powerful approach for ultimately replicating vascularization , enabling precise microscale control and manipulation of physical parameters. Despite these advances, the real-time ability to monitor and quantify mechanical forces-particularly pressure-within microfluidic environments remains constrained by limitations in cost and compatibility across diverse device architectures. Our work presents an advanced experimental module for quantifying pressure within a vascularizing microfluidic platform. Equipped with an integrated Arduino microcontroller and image monitoring, the system facilitates real-time remote monitoring to access temporal pressure and flow dynamics within the device. This setup provides actionable insights into the hemodynamic parameters driving vascularization . In-line pressure sensors, interfaced through I2C communication, are employed to precisely record inlet and outlet pressures during critical stages of microvasculature tubulogenesis. Flow measurements are obtained by analyzing changes in reservoir volume over time (dV/dt), correlated with the change in pressure over time (dP/dt). This quantitative assessment of various pressure conditions in a microfluidic platform offers insights into their impact on microvasculature perfusion kinetics. Data acquisition can help inform and finetune functional vessel network formation and potentially enhance the durability, stability, and reproducibility of engineered platforms for organoid vascularization in regenerative medicine.

摘要

微流控平台为最终复制血管化提供了一种强大的方法,能够对物理参数进行精确的微观控制和操作。尽管取得了这些进展,但在微流控环境中监测和量化机械力(特别是压力)的实时能力仍然受到成本限制以及不同设备架构之间兼容性的制约。我们的工作提出了一个用于量化血管化微流控平台内压力的先进实验模块。该系统配备了集成的Arduino微控制器和图像监测功能,便于进行实时远程监测,以获取设备内的瞬时压力和流动动态。这种设置为驱动血管化的血流动力学参数提供了可操作的见解。通过I2C通信接口的在线压力传感器用于在微脉管系统形成小管的关键阶段精确记录入口和出口压力。通过分析储液器体积随时间的变化(dV/dt)来获得流量测量值,该值与压力随时间的变化(dP/dt)相关。对微流控平台中各种压力条件的这种定量评估有助于深入了解它们对微脉管系统灌注动力学的影响。数据采集有助于为功能性血管网络的形成提供信息并进行微调,并有可能提高再生医学中用于类器官血管化的工程平台的耐久性、稳定性和可重复性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bde/12383887/fea0f08e1903/biomimetics-10-00501-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验