Suppr超能文献

可解释机器学习在高级别动脉瘤性蛛网膜下腔出血结局预测中的应用。

Explainable machine learning in outcome prediction of high-grade aneurysmal subarachnoid hemorrhage.

机构信息

Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China.

Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, China.

出版信息

Aging (Albany NY). 2024 Mar 1;16(5):4654-4669. doi: 10.18632/aging.205621.

Abstract

OBJECTIVE

Accurate prognostic prediction in patients with high-grade aneruysmal subarachnoid hemorrhage (aSAH) is essential for personalized treatment. In this study, we developed an interpretable prognostic machine learning model for high-grade aSAH patients using SHapley Additive exPlanations (SHAP).

METHODS

A prospective registry cohort of high-grade aSAH patients was collected in one single-center hospital. The endpoint in our study is a 12-month follow-up outcome. The dataset was divided into training and validation sets in a 7:3 ratio. Machine learning algorithms, including Logistic regression model (LR), support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost), were employed to develop a prognostic prediction model for high-grade aSAH. The optimal model was selected for SHAP analysis.

RESULTS

Among the 421 patients, 204 (48.5%) exhibited poor prognosis. The RF model demonstrated superior performance compared to LR (AUC = 0.850, 95% CI: 0.783-0.918), SVM (AUC = 0.862, 95% CI: 0.799-0.926), and XGBoost (AUC = 0.850, 95% CI: 0.783-0.917) with an AUC of 0.867 (95% CI: 0.806-0 .929). Primary prognostic features identified through SHAP analysis included higher World Federation of Neurosurgical Societies (WFNS) grade, higher modified Fisher score (mFS) and advanced age, were found to be associated with 12-month unfavorable outcome, while the treatment of coiling embolization for aSAH drove the prediction towards favorable prognosis. Additionally, the SHAP force plot visualized individual prognosis predictions.

CONCLUSIONS

This study demonstrated the potential of machine learning techniques in prognostic prediction for high-grade aSAH patients. The features identified through SHAP analysis enhance model interpretability and provide guidance for clinical decision-making.

摘要

目的

准确预测高分级动脉瘤性蛛网膜下腔出血(aSAH)患者的预后对于制定个体化治疗方案至关重要。本研究采用 Shapley 加性解释(SHAP)开发了一种用于高分级 aSAH 患者的可解释的机器学习预后模型。

方法

在一家单中心医院收集了前瞻性高分级 aSAH 患者登记队列。本研究的终点是 12 个月的随访结果。数据集按 7:3 的比例分为训练集和验证集。使用 Logistic 回归模型(LR)、支持向量机(SVM)、随机森林(RF)和极端梯度提升(XGBoost)等机器学习算法开发高分级 aSAH 的预后预测模型。选择最优模型进行 SHAP 分析。

结果

在 421 例患者中,204 例(48.5%)预后不良。RF 模型的性能优于 LR(AUC=0.850,95%CI:0.783-0.918)、SVM(AUC=0.862,95%CI:0.799-0.926)和 XGBoost(AUC=0.850,95%CI:0.783-0.917),AUC 为 0.867(95%CI:0.806-0.929)。通过 SHAP 分析确定的主要预后特征包括较高的世界神经外科学会(WFNS)分级、较高的改良 Fisher 评分(mFS)和较高的年龄,与 12 个月不良预后相关,而 aSAH 的血管内弹簧圈栓塞治疗则使预测结果向有利方向发展。此外,SHAP 力图可视化了个体预后预测。

结论

本研究表明机器学习技术在高分级 aSAH 患者预后预测中的潜力。通过 SHAP 分析确定的特征增强了模型的可解释性,并为临床决策提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81a4/10968679/98b8529fbf5f/aging-16-205621-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验