Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China.
Department of Radiotherapy, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, PR China.
Biomaterials. 2024 Jun;307:122513. doi: 10.1016/j.biomaterials.2024.122513. Epub 2024 Feb 26.
The excessive intracellular Ca can induce oxidative stress, mitochondrial damage and cell apoptosis, which has been extensively explored for tumor therapy. However, the low Ca accumulation originated from Ca-based nanosystems substantially weakens the therapeutic effect. Herein, a functional plant polyphenol-appended enzyodynamic nanozyme system CaFeO@BSA-curcumin (abbreviation as CFO-CUR) has been rationally designed and engineered to achieve magnified Ca accumulation process, deleterious reactive oxygen species (ROS) production, as well as mitochondrial dysfunction through enzyodynamic-Ca overload synergistic effect. The exogenous Ca released by CaFeO nanozymes under the weakly acidic tumor microenvironment and Ca efflux inhibition by curcumin boost mitochondria-dominant antineoplastic efficiency. The presence of Fe components with multivalent characteristic depletes endogenous glutathione and outputs the incremental ROS due to the oxidase-, peroxidase-, glutathione peroxidase-mimicking activities. The ROS burst-triggered regulation of Ca channels and pumps strengthens the intracellular Ca accumulation. Especially, the exogenous ultrasound stimulation further amplifies mitochondrial damage. Both in vitro and in vivo experimental results affirm the ultrasound-augmented enzyodynamic-Ca overload synergetic tumor inhibition outcomes. This study highlights the role of ultrasound coupled with functional nanozyme in the homeostasis imbalance and function disorder of mitochondria for highly efficient tumor treatment.
细胞内过多的 Ca 可以诱导氧化应激、线粒体损伤和细胞凋亡,这已被广泛用于肿瘤治疗的研究。然而,基于 Ca 的纳米系统产生的低 Ca 积累大大削弱了治疗效果。在此,通过合理设计和构建一种功能性植物多酚修饰的酶动力学纳米酶系统 CaFeO@BSA-姜黄素(简称 CFO-CUR),实现了放大的 Ca 积累过程、有害活性氧(ROS)的产生以及线粒体功能障碍,这是通过酶动力学-Ca 过载协同作用实现的。在弱酸性肿瘤微环境下,CaFeO 纳米酶释放的外源 Ca 和姜黄素抑制 Ca 外流,增强了线粒体主导的抗肿瘤效率。具有多价特性的 Fe 成分的存在会消耗内源性谷胱甘肽,并由于氧化酶、过氧化物酶、谷胱甘肽过氧化物酶模拟活性而产生额外的 ROS。ROS 爆发引发的 Ca 通道和泵的调节增强了细胞内 Ca 的积累。特别是,外源性超声刺激进一步放大了线粒体损伤。体外和体内实验结果都证实了超声增强的酶动力学-Ca 过载协同肿瘤抑制作用。本研究强调了超声与功能性纳米酶在维持线粒体的内环境平衡和功能障碍方面的作用,为高效的肿瘤治疗提供了新的思路。
Biomaterials. 2024-6
ACS Appl Mater Interfaces. 2024-2-21