文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

迈向精准医学:肿瘤治疗中纳米酶的设计考量。

Towards precision medicine: design considerations for nanozymes in tumor treatment.

机构信息

Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping district, Shenyang, 110001, People's Republic of China.

Department of Chemistry and the Institute for Sustainability and Energy, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA.

出版信息

J Transl Med. 2024 Nov 16;22(1):1033. doi: 10.1186/s12967-024-05845-w.


DOI:10.1186/s12967-024-05845-w
PMID:39550581
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11568558/
Abstract

Since the discovery of Fe3O4 nanoparticles with enzyme-like activity in 2007, nanozymes have emerged as a promising class of catalysts, offering advantages such as high catalytic efficiency, low cost, mild reaction conditions, and excellent stability. These properties make nanozymes highly suitable for large-scale production. In recent years, the convergence of nanomedicine and nanocatalysis has highlighted the potential of nanozymes in diagnostic and therapeutic applications, particularly in tumor therapy. Despite these advancements, the clinical translation of nanozymes remains hindered by the lack of designs tailored to specific tumor characteristics, limiting their effectiveness in targeted therapy. This review addresses the mechanisms by which nanozymes induce cell death in various tumor types and emphasizes the key design considerations needed to enhance their therapeutic potential. By identifying the challenges and opportunities in the field, this study aims to provide a foundation for future nanozyme development, ultimately contributing to more precise and effective cancer treatments.

摘要

自 2007 年发现具有酶样活性的 Fe3O4 纳米粒子以来,纳米酶作为一类有前途的催化剂出现了,具有高效催化、低成本、温和的反应条件和优异的稳定性等优点。这些特性使得纳米酶非常适合大规模生产。近年来,纳米医学和纳米催化的融合突出了纳米酶在诊断和治疗应用中的潜力,特别是在肿瘤治疗方面。尽管取得了这些进展,但纳米酶的临床转化仍然受到缺乏针对特定肿瘤特征的设计的限制,限制了它们在靶向治疗中的有效性。本综述讨论了纳米酶在各种肿瘤类型中诱导细胞死亡的机制,并强调了增强其治疗潜力所需的关键设计考虑因素。通过确定该领域的挑战和机遇,本研究旨在为未来的纳米酶开发提供基础,最终为更精确和有效的癌症治疗做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0411/11568558/f0259827eb23/12967_2024_5845_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0411/11568558/be833b8dbcf0/12967_2024_5845_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0411/11568558/54c311c4281c/12967_2024_5845_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0411/11568558/d4745eee3ada/12967_2024_5845_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0411/11568558/3ecb85dc4c0d/12967_2024_5845_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0411/11568558/f0259827eb23/12967_2024_5845_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0411/11568558/be833b8dbcf0/12967_2024_5845_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0411/11568558/54c311c4281c/12967_2024_5845_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0411/11568558/d4745eee3ada/12967_2024_5845_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0411/11568558/3ecb85dc4c0d/12967_2024_5845_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0411/11568558/f0259827eb23/12967_2024_5845_Fig5_HTML.jpg

相似文献

[1]
Towards precision medicine: design considerations for nanozymes in tumor treatment.

J Transl Med. 2024-11-16

[2]
Deep Insight of Design, Mechanism, and Cancer Theranostic Strategy of Nanozymes.

Nanomicro Lett. 2023-11-21

[3]
Nanozymes-Mediated Cascade Reaction System for Tumor-Specific Diagnosis and Targeted Therapy.

Small Methods. 2024-10

[4]
Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications.

Chem Rev. 2019-2-25

[5]
Nanozymes for biomedical applications: Multi-metallic systems may improve activity but at the cost of higher toxicity?

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024

[6]
Structure design mechanisms and inflammatory disease applications of nanozymes.

Nanoscale. 2022-12-22

[7]
In vivo guiding inorganic nanozymes for biosensing and therapeutic potential in cancer, inflammation and microbial infections.

Talanta. 2021-3-1

[8]
The impact of hollow core-shell nanozymes in biosensing: A case study of p-FeO@PDA@ZIF-67.

Anal Chim Acta. 2024-6-22

[9]
Nanozymes: From New Concepts, Mechanisms, and Standards to Applications.

Acc Chem Res. 2019-7-5

[10]
Multifunctional nanozymes for disease diagnosis and therapy.

Biomed J. 2024-8

引用本文的文献

[1]
Polyvinylpyrrolidone-stabilized ultra-small FeO nanoparticles-functionalized graphene oxide with synergistically enhanced peroxidase-like activity for glutathione colorimetric determination in rat serum.

Mikrochim Acta. 2025-3-25

[2]
Emerging engineered nanozymes: current status and future perspectives in cancer treatments.

Nanoscale Adv. 2025-1-28

本文引用的文献

[1]
Fe/Cu Bimetallic Nanozyme Co-Assembled with Lu and Tanshinone for Quadruple-Synergistic Tumor-Specific Therapy.

Adv Healthc Mater. 2025-4

[2]
2D Catalytic Nanozyme Enables Cascade Enzyodynamic Effect-Boosted and Ca Overload-Induced Synergistic Ferroptosis/Apoptosis in Tumor.

Adv Mater. 2024-6

[3]
Ultrasound-augmented enzyodynamic-Ca overload synergetic tumor nanotherapy.

Biomaterials. 2024-6

[4]
Single-Atom Cu Nanozyme-Loaded Bone Scaffolds for Ferroptosis-Synergized Mild Photothermal Therapy in Osteosarcoma Treatment.

Adv Healthc Mater. 2024-6

[5]
Remodeling of the liver fibrosis microenvironment based on nilotinib-loaded multicatalytic nanozymes with boosted antifibrogenic activity.

Acta Pharm Sin B. 2023-12

[6]
A Mild Hyperthermia Hollow Carbon Nanozyme as Pyroptosis Inducer for Boosted Antitumor Immunity.

ACS Nano. 2023-11-28

[7]
Peroxide-Simulating and GSH-Depleting Nanozyme for Enhanced Chemodynamic/Photodynamic Therapy via Induction of Multisource ROS.

ACS Appl Mater Interfaces. 2023-10-18

[8]
Tumor-derived covalent organic framework nanozymes for targeted chemo-photothermal combination therapy.

iScience. 2023-7-16

[9]
Inhibition of autophagy and induction of glioblastoma cell death by NEO214, a perillyl alcohol-rolipram conjugate.

Autophagy. 2023-12

[10]
Destroying pathogen-tumor symbionts synergizing with catalytic therapy of colorectal cancer by biomimetic protein-supported single-atom nanozyme.

Signal Transduct Target Ther. 2023-7-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索