Suppr超能文献

超薄纳米片原位修饰硫掺杂的三维互连碳网络作为层间改性锂硫电池隔膜,用于加速多硫化锂的吸附-催化协同过程。

Ultra-thin nanosheets decorated in-situ S-doped 3D interconnected carbon network as interlayer modified Li-S batteries separator for accelerating adsorption-catalytic synergistic process of LiPSs.

作者信息

Zhang Wenjun, Du Xi, Zhang Maliang, Su Kunmei, Li Shulong, Li Zhenhuan

机构信息

State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Materials Science and Engineering, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, Tiangong University, Tianjin 300387, China.

State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Materials Science and Engineering, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, Tiangong University, Tianjin 300387, China.

出版信息

J Colloid Interface Sci. 2024 Jun;663:735-748. doi: 10.1016/j.jcis.2024.02.202. Epub 2024 Feb 29.

Abstract

The shuttle effect of soluble lithium polysulfides (LiPSs) is primarily responsible for the unstable performance of lithium-sulfur (Li-S) batteries, which has severely impeded their continued development. In order to solve this problem, a special strategy is proposed. Specifically, ultra-thin NiCo based layered double hydroxides (named LDH or NiCo-LDH) nanosheets are implanted into a pre-designed 3D interconnected carbon networks (SPC) to obtain porous composite materials (named SPC-LDH).During the operation of the battery, the 3D interconnected porous carbon mesh was the first to rapidly adsorb LiPSs, and then the LDH on the surface of the carbon mesh was used to realize the catalytic conversion of LiPSs. This facilitates the electrochemical conversion reaction between S substances while addressing the "shuttle effect". As a result, the battery maintains a discharge capacity of 1401.9, 1114.3, 975.5, 880.7, 760.4 and 679.6 mAh g at the current densities of 0.1, 0.2, 0.5, 1, 2 and 3C, respectively. After 200 cycles at 2C, the battery's capacity stays at 732.9 mAh g, meaning that the average rate of capacity decay is only 0.007 % per cycle. Moreover, in-situ XRD demonstrates the critical function of PP/SPC-LDH separators in inhibiting LiPSs and encouraging LiS transformation. The strong affinity of SPC-LDH for LiS is also confirmed by density functional theory (DFT) calculation, offering more theoretical support for the synergistic adsorption process. This work offers a compelling method to develop modified separator materials that can counteract the "shuttle effect" in Li-S batteries.

摘要

可溶性多硫化锂(LiPSs)的穿梭效应是锂硫(Li-S)电池性能不稳定的主要原因,这严重阻碍了它们的持续发展。为了解决这个问题,提出了一种特殊策略。具体来说,将超薄的镍钴基层状双氢氧化物(称为LDH或NiCo-LDH)纳米片植入预先设计的三维互连碳网络(SPC)中,以获得多孔复合材料(称为SPC-LDH)。在电池运行过程中,三维互连的多孔碳网首先快速吸附LiPSs,然后利用碳网表面的LDH实现LiPSs的催化转化。这有助于S物质之间的电化学转化反应,同时解决“穿梭效应”。结果,该电池在电流密度分别为0.1、0.2、0.5、1、2和3C时的放电容量分别为1401.9、1114.3、975.5、880.7、760.4和679.6 mAh g。在2C下循环200次后,电池容量保持在732.9 mAh g,这意味着容量衰减的平均速率仅为每循环0.007%。此外,原位XRD证明了PP/SPC-LDH隔膜在抑制LiPSs和促进LiS转化方面的关键作用。密度泛函理论(DFT)计算也证实了SPC-LDH对LiS的强亲和力,为协同吸附过程提供了更多的理论支持。这项工作提供了一种引人注目的方法来开发改性隔膜材料,以抵消Li-S电池中的“穿梭效应”。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验