Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai 200030, People's Republic of China.
Shanghai Xinlianxin Psychological Counseling Co., Ltd, Shanghai, China.
Psychol Med. 2024 Jul;54(9):2230-2241. doi: 10.1017/S0033291724000382. Epub 2024 Mar 4.
Mild cognitive deficits (MCD) emerge before the first episode of psychosis (FEP) and persist in the clinical high-risk (CHR) stage. This study aims to refine risk prediction by developing MCD models optimized for specific early psychosis stages and target populations.
A comprehensive neuropsychological battery assessed 1059 individuals with FEP, 794 CHR, and 774 matched healthy controls (HCs). CHR subjects, followed up for 2 years, were categorized into converters (CHR-C) and non-converters (CHR-NC). The MATRICS Consensus Cognitive Battery standardized neurocognitive tests were employed.
Both the CHR and FEP groups exhibited significantly poorer performance compared to the HC group across all neurocognitive tests (all < 0.001). The CHR-C group demonstrated poorer performance compared to the CHR-NC group on three sub-tests: visuospatial memory ( < 0.001), mazes ( = 0.005), and symbol coding ( = 0.023) tests. Upon adjusting for sex and age, the performance of the MCD model was excellent in differentiating FEP from HC, as evidenced by an Area Under the Receiver Operating Characteristic Curve (AUC) of 0.895 ( < 0.001). However, when applied in the CHR group for predicting CHR-C (AUC = 0.581, = 0.008), the performance was not satisfactory. To optimize the efficiency of psychotic risk assessment, three distinct MCD models were developed to distinguish FEP from HC, predict CHR-C from CHR-NC, and identify CHR from HC, achieving accuracies of 89.3%, 65.6%, and 80.2%, respectively.
The MCD exhibits variations in domains, patterns, and weights across different stages of early psychosis and diverse target populations. Emphasizing precise risk assessment, our findings highlight the importance of tailored MCD models for different stages and risk levels.
轻度认知障碍(MCD)出现在精神病首次发作(FEP)之前,并在临床高风险(CHR)阶段持续存在。本研究旨在通过开发针对特定早期精神病阶段和目标人群的 MCD 模型来完善风险预测。
一项全面的神经心理学测试评估了 1059 名 FEP 患者、794 名 CHR 患者和 774 名匹配的健康对照者(HCs)。对 CHR 患者进行了 2 年的随访,分为转化者(CHR-C)和非转化者(CHR-NC)。采用 MATRICS 共识认知电池标准化神经认知测试。
与 HC 组相比,CHR 和 FEP 组在所有神经认知测试中表现明显较差(所有 P<0.001)。CHR-C 组在三个子测试上的表现明显差于 CHR-NC 组:视觉空间记忆(P<0.001)、迷宫(P=0.005)和符号编码(P=0.023)测试。在调整性别和年龄后,MCD 模型在区分 FEP 与 HC 方面表现出色,其受试者工作特征曲线下面积(AUC)为 0.895(P<0.001)。然而,当应用于 CHR 组预测 CHR-C(AUC=0.581,P=0.008)时,表现并不令人满意。为了优化精神病风险评估的效率,开发了三个不同的 MCD 模型,用于区分 FEP 与 HC、预测 CHR-C 与 CHR-NC、以及识别 CHR 与 HC,其准确性分别为 89.3%、65.6%和 80.2%。
MCD 在不同的早期精神病阶段和不同的目标人群中,在领域、模式和权重上存在差异。强调精确的风险评估,我们的发现强调了针对不同阶段和风险水平定制 MCD 模型的重要性。