Suppr超能文献

半赫斯勒热电材料中的强电子 - 声子耦合与高晶格热导率

Strong electron-phonon coupling and high lattice thermal conductivity in half-Heusler thermoelectric materials.

作者信息

Wang Ruoyu, Cai Jianfeng, Zhang Qiang, Tan Xiaojian, Wu Jiehua, Liu Guoqiang, Jiang Jun

机构信息

Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Phys Chem Chem Phys. 2024 Mar 13;26(11):8932-8937. doi: 10.1039/d3cp06160d.

Abstract

Traditional half-Heusler thermoelectric materials, identified as 18-electron compounds, are characterized by the high power factor and the high lattice thermal conductivity. Interestingly, the emerging 19-electron half-Heusler compounds were also found to be promising thermoelectric materials, but with a 5-10 times lower lattice thermal conductivity. Since the two kinds of compounds have similar chemical and physical structures, such as TiCoSb and VCoSb, the large difference in lattice thermal conductivity is a puzzling question. Here, we present a theoretical study to clarify the lattice thermal transport in half-Heusler thermoelectric materials. Based on electronic band structure analysis, we show that the two transition-metal elements in half-Heusler compounds form the strong and direct d-d interaction that is responsible for the high lattice thermal conductivity of 18-electron compounds. In 19-electron half-Heusler compounds, however, the extra valence electron enters the d-d antibonding states, which significantly weakens the atomic bond strength, leading to a large decrease in the cohesive energy. The resulting softened acoustic phonons enhance the phonon-phonon scattering, and thus reduce the lattice thermal conductivity significantly. By constructing an artificial 18-e compound VScCoSb, it is proved that the one less electron relative to VCoSb increases the lattice thermal conductivity significantly.

摘要

传统的半赫斯勒热电材料被认为是18电子化合物,其特点是功率因数高和晶格热导率高。有趣的是,新兴的19电子半赫斯勒化合物也被发现是很有前景的热电材料,但其晶格热导率要低5到10倍。由于这两种化合物具有相似的化学和物理结构,如TiCoSb和VCoSb,晶格热导率的巨大差异是一个令人困惑的问题。在此,我们进行了一项理论研究,以阐明半赫斯勒热电材料中的晶格热输运。基于电子能带结构分析,我们表明半赫斯勒化合物中的两种过渡金属元素形成了强且直接的d-d相互作用,这是18电子化合物具有高晶格热导率的原因。然而,在19电子半赫斯勒化合物中,额外的价电子进入d-d反键态,这显著削弱了原子键强度,导致内聚能大幅降低。由此产生的软化声子增强了声子-声子散射,从而显著降低了晶格热导率。通过构建人工18电子化合物VScCoSb,证明相对于VCoSb少一个电子会显著提高晶格热导率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验