Suppr超能文献

多变量预测模型在创伤性脊髓损伤中的应用:系统综述。

Multivariable Prediction Models for Traumatic Spinal Cord Injury: A Systematic Review.

机构信息

University of Ottawa, Ottawa, Ontario, Canada.

The Ottawa Hospital, Ottawa, Ontario, Canada.

出版信息

Top Spinal Cord Inj Rehabil. 2024 Winter;30(1):1-44. doi: 10.46292/sci23-00010. Epub 2024 Feb 29.

Abstract

BACKGROUND

Traumatic spinal cord injuries (TSCI) greatly affect the lives of patients and their families. Prognostication may improve treatment strategies, health care resource allocation, and counseling. Multivariable clinical prediction models (CPMs) for prognosis are tools that can estimate an absolute risk or probability that an outcome will occur.

OBJECTIVES

We sought to systematically review the existing literature on CPMs for TSCI and critically examine the predictor selection methods used.

METHODS

We searched MEDLINE, PubMed, Embase, Scopus, and IEEE for English peer-reviewed studies and relevant references that developed multivariable CPMs to prognosticate patient-centered outcomes in adults with TSCI. Using narrative synthesis, we summarized the characteristics of the included studies and their CPMs, focusing on the predictor selection process.

RESULTS

We screened 663 titles and abstracts; of these, 21 full-text studies (2009-2020) consisting of 33 distinct CPMs were included. The data analysis domain was most commonly at a high risk of bias when assessed for methodological quality. Model presentation formats were inconsistently included with published CPMs; only two studies followed established guidelines for transparent reporting of multivariable prediction models. Authors frequently cited previous literature for their initial selection of predictors, and stepwise selection was the most frequent predictor selection method during modelling.

CONCLUSION

Prediction modelling studies for TSCI serve clinicians who counsel patients, researchers aiming to risk-stratify participants for clinical trials, and patients coping with their injury. Poor methodological rigor in data analysis, inconsistent transparent reporting, and a lack of model presentation formats are vital areas for improvement in TSCI CPM research.

摘要

背景

外伤性脊髓损伤(TSCI)极大地影响了患者及其家庭的生活。预后预测可以改善治疗策略、医疗资源分配和咨询。用于预后的多变量临床预测模型(CPM)是可以估计发生结果的绝对风险或概率的工具。

目的

我们旨在系统地回顾现有的用于 TSCI 的 CPM 文献,并批判性地检查所使用的预测因子选择方法。

方法

我们在 MEDLINE、PubMed、Embase、Scopus 和 IEEE 上搜索了英文同行评审研究以及相关参考文献,这些研究开发了多变量 CPM,以预测成人 TSCI 患者的以患者为中心的结局。我们使用叙述性综合法总结了纳入研究及其 CPM 的特征,重点关注预测因子选择过程。

结果

我们筛选了 663 篇标题和摘要;其中,21 篇全文研究(2009-2020 年)包含 33 个不同的 CPM。当评估方法学质量时,数据分析领域的偏倚风险最高。模型呈现格式不一致地包含在已发表的 CPM 中;只有两项研究遵循了多变量预测模型透明报告的既定指南。作者经常为其预测因子的初始选择引用先前的文献,逐步选择是建模过程中最常见的预测因子选择方法。

结论

TSCI 的预测模型研究为为患者提供咨询的临床医生、旨在对临床试验参与者进行风险分层的研究人员以及应对自身伤害的患者提供了服务。数据分析中方法学严谨性差、报告不透明以及缺乏模型呈现格式是 TSCI CPM 研究中需要改进的重要领域。

相似文献

3
Guidelines for neuroprognostication in adults with traumatic spinal cord injury.成人创伤性脊髓损伤神经预后指南。
Neurocrit Care. 2024 Apr;40(2):415-437. doi: 10.1007/s12028-023-01845-8. Epub 2023 Nov 13.
10
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

本文引用的文献

1
Implementing machine learning in medicine.在医学中实施机器学习。
CMAJ. 2021 Aug 30;193(34):E1351-E1357. doi: 10.1503/cmaj.202434. Epub 2021 Aug 29.
6
Challenges and solutions in prognostic prediction models in spinal disorders.脊柱疾病预后预测模型中的挑战与解决方案
J Clin Epidemiol. 2021 Apr;132:125-130. doi: 10.1016/j.jclinepi.2020.12.017. Epub 2021 Jan 18.
8
A conceptual framework for prognostic research.预后研究的概念框架。
BMC Med Res Methodol. 2020 Jun 29;20(1):172. doi: 10.1186/s12874-020-01050-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验