Suppr超能文献

采用一种改进的竞争算法对分布式发电资源、电容器和充电站进行优化布局。

Optimum placement of distributed generation resources, capacitors and charging stations with a developed competitive algorithm.

作者信息

Wang Shifeng, Li Zhixiang, Golkar Mohammad Javad

机构信息

University of Sanya, Sanya, Hainan, 572099, China.

The Open University of China, Beijing, 100039, China.

出版信息

Heliyon. 2024 Feb 14;10(4):e26194. doi: 10.1016/j.heliyon.2024.e26194. eCollection 2024 Feb 29.

Abstract

This study presents a novel approach for the optimal placement of distributed generation (DG) resources, electric vehicle (EV) charging stations, and shunt capacitors (SC) in power distribution systems. The primary objective is to improve power efficiency and voltage profiles while considering practical and nonlinear constraints. The proposed model combines competitive search optimization (CSO) with fuzzy and chaotic theory to develop an efficient and effective solution. The use of fuzzy theory in the model enables the identification of optimal locations for DG sources and SCs, leading to significant enhancements in power index, generation, power losses, and system voltage. Moreover, the proposed fuzzy method is employed to determine the best locations for EV charging stations, further optimizing the overall system performance. The theoretical analysis demonstrates substantial improvements in both accuracy and convergence speed, highlighting the robustness of the proposed approach. In addition, the utilization of chaos theory enhances the local search optimization process, making the proposed method more efficient in finding high-quality solutions. To validate the performance of the model, extensive simulations are conducted on a 69-bus distribution system and various test functions. The results consistently reveal the superiority of the proposed method compared to other conventional optimization techniques. The key contribution of this study lies in its development of a comprehensive and efficient approach for the optimal placement of DG, EV charging stations, and SCs in power distribution systems. The integration of CSO, fuzzy theory, and chaotic theory enables the simultaneous consideration of multiple objectives and constraints, resulting in enhanced power dissipation reduction and voltage profile improvement. The obtained results demonstrate the practical applicability and superiority of the proposed method, which can significantly benefit power system planners and operators in real-world scenarios.

摘要

本研究提出了一种在配电系统中优化分布式发电(DG)资源、电动汽车(EV)充电站和并联电容器(SC)布局的新方法。主要目标是在考虑实际和非线性约束的同时提高功率效率和电压分布。所提出的模型将竞争搜索优化(CSO)与模糊和混沌理论相结合,以开发一种高效且有效的解决方案。该模型中模糊理论的使用能够确定DG源和SC的最佳位置,从而显著提高功率指标、发电量、功率损耗和系统电压。此外,所提出的模糊方法用于确定EV充电站的最佳位置,进一步优化整体系统性能。理论分析表明,在精度和收敛速度方面都有显著提高,突出了所提方法的鲁棒性。此外,混沌理论的应用增强了局部搜索优化过程,使所提方法在寻找高质量解决方案时更有效。为了验证模型的性能,在一个69节点配电系统和各种测试函数上进行了广泛的仿真。结果始终表明,与其他传统优化技术相比,所提方法具有优越性。本研究的关键贡献在于开发了一种全面且高效的方法,用于在配电系统中优化DG、EV充电站和SC的布局。CSO、模糊理论和混沌理论的集成能够同时考虑多个目标和约束,从而增强了功率损耗降低和电压分布改善。所获得的结果证明了所提方法的实际适用性和优越性,这在实际场景中能够显著造福电力系统规划者和运营商。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59a3/10906144/ceeef512ef85/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验