Suppr超能文献

优化微电网性能:电动汽车充电与可再生能源和储能系统的战略集成,以实现总成本和排放最小化。

Optimizing microgrid performance: Strategic integration of electric vehicle charging with renewable energy and storage systems for total operation cost and emissions minimization.

机构信息

Department of Electrical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam Bin Abdulaziz University, Wadi Alddawasir, Saudi Arabia.

Electrical Engineering Department, Aswan Faculty of Engineering, Aswan University, Aswan, Egypt.

出版信息

PLoS One. 2024 Oct 3;19(10):e0307810. doi: 10.1371/journal.pone.0307810. eCollection 2024.

Abstract

At present, renewable energy sources (RESs) and electric vehicles (EVs) are presented as viable solutions to reduce operation costs and lessen the negative environmental effects of microgrids (μGs). Thus, the rising demand for EV charging and storage systems coupled with the growing penetration of various RESs has generated new obstacles to the efficient operation and administration of these μGs. In this regard, this paper introduces a multi-objective optimization model for minimizing the total operation cost of the μG and its emissions, considering the effect of battery storage system (BSS) and EV charging station load. A day-ahead scheduling model is proposed for optimal energy management (EM) of the μG investigated, which comprises photovoltaics (PVs), fuel cells (FCs), wind turbines (WTs), BSSs, and EV charging stations, with shed light on the viability and benefits of connecting BSS with EV charging stations in the μG. Analyzing three case studies depending on the objective function-Case 1: execute EM to minimize total operation cost and maximize the profits of BSS, Case 2: execute EM to minimize total emission from the μG, and Case 3: execute EM to minimize total operation cost, maximize the profits of BSS, and minimize total emissions from the μG. The main aim of the presented optimization strategy is to achieve the best possible balance between reducing expenses and lessening the environmental impact of greenhouse gas emissions. The krill herd algorithm (KHA) is used to find the optimal solutions while considering various nonlinear constraints. To demonstrate the validity and effectiveness of the proposed solution, the study utilizes the KHA and compares the obtained results with those achieved by other optimization methods. It was demonstrated that such integration significantly enhances the μG's operational efficiency, reduces operating costs, and minimizes environmental impact. The findings underscore the viability of combining EV charging infrastructure with renewable energy to meet the increasing energy demand sustainably. The novelty of this work lies in its multi-objective optimization approach, the integration of EV charging and BSS in μGs, the comparison with other optimization methods, and the emphasis on sustainability and addressing energy demand through the utilization of renewable energy and EVs.

摘要

目前,可再生能源(RESs)和电动汽车(EVs)被认为是降低运营成本和减轻微电网(μGs)负面环境影响的可行解决方案。因此,对电动汽车充电和存储系统的需求不断增加,加上各种可再生能源渗透率的不断提高,给这些μGs 的有效运行和管理带来了新的障碍。在这方面,本文提出了一种多目标优化模型,以最小化μG 的总运营成本和排放,同时考虑电池储能系统(BSS)和电动汽车充电站负载的影响。提出了一种用于μG 最优能量管理(EM)的日前调度模型,该模型包括光伏(PVs)、燃料电池(FCs)、风力涡轮机(WTs)、BSS 和电动汽车充电站,并说明了将 BSS 与电动汽车充电站连接到μG 的可行性和好处。根据目标函数分析了三个案例研究,案例 1:执行 EM 以最小化总运营成本并最大化 BSS 的利润,案例 2:执行 EM 以最小化μG 的总排放,案例 3:执行 EM 以最小化总运营成本、最大化 BSS 的利润并最小化μG 的总排放。所提出的优化策略的主要目标是在降低费用和减少温室气体排放的环境影响之间取得最佳平衡。使用磷虾群算法(KHA)在考虑各种非线性约束的情况下找到最优解。为了证明所提出解决方案的有效性和有效性,该研究使用 KHA 并将获得的结果与其他优化方法的结果进行了比较。结果表明,这种集成显著提高了μG 的运行效率,降低了运营成本,并且最小化了环境影响。研究结果强调了将电动汽车充电基础设施与可再生能源相结合以可持续地满足不断增长的能源需求的可行性。这项工作的新颖之处在于其多目标优化方法、电动汽车充电和 BSS 在μGs 中的集成、与其他优化方法的比较以及对可持续性的强调以及通过利用可再生能源和电动汽车来满足能源需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df30/11449302/a0e155026f2d/pone.0307810.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验