Suppr超能文献

使用 SCDNEY 构建数据故事的思维过程模板。

Thinking process templates for constructing data stories with SCDNEY.

机构信息

Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong SAR, China.

Sydney Precision Data Science Centre, The University of Sydney, Sydney, NSW, 2006, Australia.

出版信息

F1000Res. 2023 Dec 15;12:261. doi: 10.12688/f1000research.130623.1. eCollection 2023.

Abstract

BACKGROUND

Globally, scientists now have the ability to generate a vast amount of high throughput biomedical data that carry critical information for important clinical and public health applications. This data revolution in biology is now creating a plethora of new single-cell datasets. Concurrently, there have been significant methodological advances in single-cell research. Integrating these two resources, creating tailor-made, efficient, and purpose-specific data analysis approaches can assist in accelerating scientific discovery.

METHODS

We developed a series of living workshops for building data stories, using Single-cell data integrative analysis (scdney). scdney is a wrapper package with a collection of single-cell analysis R packages incorporating data integration, cell type annotation, higher order testing and more.

RESULTS

Here, we illustrate two specific workshops. The first workshop examines how to characterise the identity and/or state of cells and the relationship between them, known as phenotyping. The second workshop focuses on extracting higher-order features from cells to predict disease progression.

CONCLUSIONS

Through these workshops, we not only showcase current solutions, but also highlight critical thinking points. In particular, we highlight the Thinking Process Template that provides a structured framework for the decision-making process behind such single-cell analyses. Furthermore, our workshop will incorporate dynamic contributions from the community in a collaborative learning approach, thus the term 'living'.

摘要

背景

在全球范围内,科学家现在有能力生成大量高通量的生物医学数据,这些数据对重要的临床和公共卫生应用具有关键信息。生物学领域的数据革命正在产生大量新的单细胞数据集。与此同时,单细胞研究也取得了重大的方法学进展。整合这两种资源,创建定制的、高效的、有特定用途的数据分析方法,可以帮助加速科学发现。

方法

我们开发了一系列用于构建数据故事的现场研讨会,使用单细胞数据综合分析(scdney)。scdney 是一个包装器包,其中包含了一系列单细胞分析 R 包,整合了数据集成、细胞类型注释、高阶检验等功能。

结果

在这里,我们展示了两个具体的研讨会。第一个研讨会探讨了如何描述细胞的身份和/或状态以及它们之间的关系,这被称为表型分析。第二个研讨会专注于从细胞中提取高阶特征以预测疾病进展。

结论

通过这些研讨会,我们不仅展示了当前的解决方案,还强调了关键的思考要点。特别是,我们强调了思维过程模板,它为单细胞分析背后的决策过程提供了一个结构化的框架。此外,我们的研讨会将以协作学习的方式纳入社区的动态贡献,因此称之为“活”。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d3f/10965157/87200c190c81/f1000research-12-159911-g0000.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验