Liu Yang, Qian Yongchao, Fu Lin, Zhu Congcong, Li Xin, Wang Qingchen, Ling Haoyang, Du Huaqing, Zhou Shengyang, Kong Xiang-Yu, Jiang Lei, Wen Liping
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
ACS Cent Sci. 2024 Feb 13;10(2):469-476. doi: 10.1021/acscentsci.3c01179. eCollection 2024 Feb 28.
With the rapid development of the lithium ion battery industry, emerging lithium (Li) enrichment in nature has attracted ever-growing attention due to the biotoxicity of high Li levels. To date, fast lithium ion (Li) detection remains urgent but is limited by the selectivity, sensitivity, and stability of conventional technologies based on passive response processes. In nature, archaeal plasma membrane ion exchangers (NCLX_Mj) exhibit Li-gated multi/monovalent ion transport behavior, activated by different stimuli. Inspired by NCLX_Mj, we design a pH-controlled biomimetic Li-responsive solid-state nanochannel system for on-demand Li detection using 2-(2-hydroxyphenyl)benzoxazole (HPBO) units as Li recognition groups. Pristine HPBO is not reactive to Li, whereas negatively charged HPBO enables specific Li coordination under alkaline conditions to decrease the ion exchange capacity of nanochannels. On-demand Li detection is achieved by monitoring the decline in currents, thereby ensuring precise and stable Li recognition (>0.1 mM) in the toxic range of Li concentration (>1.5 mM) for human beings. This work provides a new approach to constructing Li detection nanodevices and has potential for applications of Li-related industries and medical services.
随着锂离子电池行业的快速发展,由于高锂含量具有生物毒性,自然界中新兴的锂(Li)富集现象受到了越来越多的关注。迄今为止,快速锂离子(Li)检测仍然十分迫切,但受到基于被动响应过程的传统技术的选择性、灵敏度和稳定性的限制。在自然界中,古菌质膜离子交换器(NCLX_Mj)表现出锂门控的多价/单价离子传输行为,可被不同刺激激活。受NCLX_Mj启发,我们设计了一种pH控制的仿生锂响应固态纳米通道系统,用于按需进行锂检测,该系统使用2-(2-羟基苯基)苯并恶唑(HPBO)单元作为锂识别基团。原始的HPBO对锂无反应,而带负电荷的HPBO在碱性条件下能够实现特定的锂配位,从而降低纳米通道的离子交换能力。通过监测电流下降实现按需锂检测,从而确保在对人类有毒的锂浓度范围(>1.5 mM)内精确稳定地识别锂(>0.1 mM)。这项工作为构建锂检测纳米器件提供了一种新方法,在锂相关产业和医疗服务领域具有应用潜力。