Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia.
Department of Applied Physics, College of Science, Wuhan University of Science and Technology, Wuhan 430072, China.
Sci Adv. 2023 Jan 27;9(4):eabq1369. doi: 10.1126/sciadv.abq1369.
Single-ion selectivity with high precision has long been pursued for fundamental bioinspired engineering and applications such as in ion separation and energy conversion. However, it remains a challenge to develop artificial ion channels to achieve single-ion selectivity comparable to their biological analogs, especially for high Na/K selectivity. Here, we report an artificial sodium channel by subnanoconfinement of 4'-aminobenzo-15-crown-5 ethers (15C5s) into ~6-Å-sized metal-organic framework subnanochannel (MOFSNC). The resulting 15C5-MOFSNC shows an unprecedented Na/K selectivity of tens to 10 and Na/Li selectivity of 10 under multicomponent permeation conditions, comparable to biological sodium channels. A co-ion-responsive single-file transport mechanism in 15C-MOFSNC is proposed for the preferential transport of Na over K due to the synergetic effects of size exclusion, charge selectivity, local hydrophobicity, and preferential binding with functional groups. This study provides an alternative strategy for developing potential single-ion selective channels and membranes for many applications.
单离子选择性的高精度长期以来一直是基础仿生工程和应用领域的追求目标,例如离子分离和能量转换。然而,开发人工离子通道以实现与生物类似物相当的单离子选择性仍然是一个挑战,特别是对于高 Na/K 选择性。在这里,我们通过将 4'-氨基苯并-15-冠-5 醚(15C5s)亚纳米限制在~6-Å 大小的金属-有机骨架亚纳米通道(MOFSNC)中来报告一种人工钠离子通道。在多组分渗透条件下,所得的 15C5-MOFSNC 表现出前所未有的 Na/K 选择性,可达数十到 10,Na/Li 选择性为 10,与生物钠离子通道相当。由于尺寸排除、电荷选择性、局部疏水性和与官能团的优先结合的协同作用,提出了在 15C-MOFSNC 中存在共离子响应的单分子传输机制,这导致 Na 优先于 K 进行传输。这项研究为许多应用开发潜在的单离子选择性通道和膜提供了一种替代策略。