Suppr超能文献

智能交通系统中用于交通预测的动态多图时空同步聚合框架

Dynamic multiple-graph spatial-temporal synchronous aggregation framework for traffic prediction in intelligent transportation systems.

作者信息

Yu Xian, Bao Yinxin, Shi Quan

机构信息

School of Information Science and Technology, Nantong University, Nantong, Jiangsu, China.

Xinglin College, Nantong University, Nantong, Jiangsu, China.

出版信息

PeerJ Comput Sci. 2024 Feb 29;10:e1913. doi: 10.7717/peerj-cs.1913. eCollection 2024.

Abstract

Accurate traffic prediction contributes significantly to the success of intelligent transportation systems (ITS), which enables ITS to rationally deploy road resources and enhance the utilization efficiency of road networks. Improvements in prediction performance are evident by utilizing synchronized rather than stepwise components to model spatial-temporal correlations. Some existing studies have designed graph structures containing spatial and temporal attributes to achieve spatial-temporal synchronous learning. However, two challenges remain due to the intricate dynamics: (a) Accounting for the impact of external factors in spatial-temporal synchronous modeling. (b) Multiple perspectives in constructing spatial-temporal synchronous graphs. To address the mentioned limitations, a novel model named dynamic multiple-graph spatial-temporal synchronous aggregation framework (DMSTSAF) for traffic prediction is proposed. Specifically, DMSTSAF utilizes a feature augmentation module (FAM) to adaptively incorporate traffic data with external factors and generate fused features as inputs to subsequent modules. Moreover, DMSTSAF introduces diverse spatial and temporal graphs according to different spatial-temporal relationships. Based on this, two types of spatial-temporal synchronous graphs and the corresponding synchronous aggregation modules are designed to simultaneously extract hidden features from various aspects. Extensive experiments constructed on four real-world datasets indicate that our model improves by 3.68-8.54% compared to the state-of-the-art baseline.

摘要

准确的交通流量预测对智能交通系统(ITS)的成功至关重要,这使得智能交通系统能够合理配置道路资源并提高道路网络的利用效率。通过使用同步而非逐步的组件来建模时空相关性,预测性能有了显著提升。一些现有研究设计了包含空间和时间属性的图结构,以实现时空同步学习。然而,由于复杂的动态特性,仍然存在两个挑战:(a)在时空同步建模中考虑外部因素的影响。(b)构建时空同步图时的多个视角。为了解决上述局限性,提出了一种用于交通流量预测的新型模型,即动态多图时空同步聚合框架(DMSTSAF)。具体而言,DMSTSAF利用特征增强模块(FAM)将交通数据与外部因素自适应地结合起来,并生成融合特征作为后续模块的输入。此外,DMSTSAF根据不同的时空关系引入了多样的空间和时间图。基于此,设计了两种类型的时空同步图以及相应的同步聚合模块,以同时从各个方面提取隐藏特征。在四个真实世界数据集上进行的大量实验表明,与最先进的基线相比,我们的模型提升了3.68 - 8.54%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ae2/10909200/c57cd7c7b92f/peerj-cs-10-1913-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验