Suppr超能文献

基于联邦学习的智能建筑隐私保护与去中心化热舒适度预测模型

Privacy preserved and decentralized thermal comfort prediction model for smart buildings using federated learning.

作者信息

Abbas Sidra, Alsubai Shtwai, Sampedro Gabriel Avelino, Abisado Mideth, Almadhor Ahmad, Kim Tai-Hoon

机构信息

Department of Computer Science, COMSATS University, Islamabad, Sahiwal, Pakistan.

College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, AlKharj, Saudi Arabia.

出版信息

PeerJ Comput Sci. 2024 Feb 29;10:e1899. doi: 10.7717/peerj-cs.1899. eCollection 2024.

Abstract

Thermal comfort is a crucial element of smart buildings that assists in improving, analyzing, and realizing intelligent structures. Energy consumption forecasts for such smart buildings are crucial owing to the intricate decision-making processes surrounding resource efficiency. Machine learning (ML) techniques are employed to estimate energy consumption. ML algorithms, however, require a large amount of data to be adequate. There may be privacy violations due to collecting this data. To tackle this problem, this study proposes a federated deep learning (FDL) architecture developed around a deep neural network (DNN) paradigm. The study employs the ASHRAE RP-884 standard dataset for experimentation and analysis, which is available to the general public. The data is normalized using the min-max normalization approach, and the Synthetic Minority Over-sampling Technique (SMOTE) is used to enhance the minority class's interpretation. The DNN model is trained separately on the dataset after obtaining modifications from two clients. Each client assesses the data greatly to reduce the over-fitting impact. The test result demonstrates the efficiency of the proposed FDL by reaching 82.40% accuracy while securing the data.

摘要

热舒适性是智能建筑的关键要素,有助于改进、分析和实现智能结构。由于围绕资源效率的复杂决策过程,此类智能建筑的能耗预测至关重要。机器学习(ML)技术被用于估计能耗。然而,ML算法需要大量充足的数据。收集这些数据可能会侵犯隐私。为解决这一问题,本研究提出了一种围绕深度神经网络(DNN)范式开发的联邦深度学习(FDL)架构。该研究采用ASHRAE RP - 884标准数据集进行实验和分析,该数据集可供公众使用。数据使用最小 - 最大归一化方法进行归一化处理,并使用合成少数过采样技术(SMOTE)来增强少数类的解释。在从两个客户端获得修改后,DNN模型在数据集上分别进行训练。每个客户端对数据进行大量评估以减少过拟合影响。测试结果表明,所提出的FDL在确保数据安全的同时,准确率达到82.40%,证明了其有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验