Suppr超能文献

联邦学习:关于使能技术、协议及应用的综述

Federated Learning: A Survey on Enabling Technologies, Protocols, and Applications.

作者信息

Aledhari Mohammed, Razzak Rehma, Parizi Reza M, Saeed Fahad

机构信息

College of Computing and Software Engineering, Kennesaw State University, Marietta, GA, 30060 USA.

School of Computing and Information Sciences, Florida International University, Miami, FL, 33199 USA.

出版信息

IEEE Access. 2020;8:140699-140725. doi: 10.1109/access.2020.3013541. Epub 2020 Jul 31.

Abstract

This paper provides a comprehensive study of Federated Learning (FL) with an emphasis on enabling software and hardware platforms, protocols, real-life applications and use-cases. FL can be applicable to multiple domains but applying it to different industries has its own set of obstacles. FL is known as collaborative learning, where algorithm(s) get trained across multiple devices or servers with decentralized data samples without having to exchange the actual data. This approach is radically different from other more established techniques such as getting the data samples uploaded to servers or having data in some form of distributed infrastructure. FL on the other hand generates more robust models without sharing data, leading to privacy-preserved solutions with higher security and access privileges to data. This paper starts by providing an overview of FL. Then, it gives an overview of technical details that pertain to FL enabling technologies, protocols, and applications. Compared to other survey papers in the field, our objective is to provide a more thorough summary of the most relevant protocols, platforms, and real-life use-cases of FL to enable data scientists to build better privacy-preserving solutions for industries in critical need of FL. We also provide an overview of key challenges presented in the recent literature and provide a summary of related research work. Moreover, we explore both the challenges and advantages of FL and present detailed service use-cases to illustrate how different architectures and protocols that use FL can fit together to deliver desired results.

摘要

本文对联邦学习(FL)进行了全面研究,重点关注其在软件和硬件平台、协议、实际应用及用例方面的实现。FL可应用于多个领域,但将其应用于不同行业存在一系列障碍。FL被称为协作学习,即算法通过分散的数据样本在多个设备或服务器上进行训练,而无需交换实际数据。这种方法与其他更为成熟的技术截然不同,比如将数据样本上传到服务器或采用某种分布式基础设施形式存储数据。另一方面,FL在不共享数据的情况下生成更强大的模型,从而实现具有更高安全性和数据访问权限的隐私保护解决方案。本文首先对FL进行概述。然后,介绍与FL支持技术、协议及应用相关的技术细节。与该领域的其他综述论文相比,我们的目标是更全面地总结FL最相关的协议、平台及实际用例,以使数据科学家能够为急需FL的行业构建更好的隐私保护解决方案。我们还概述了近期文献中提出的关键挑战,并总结了相关研究工作。此外,我们探讨了FL的挑战与优势,并给出详细的服务用例,以说明使用FL的不同架构和协议如何协同工作以实现预期结果。

相似文献

1
Federated Learning: A Survey on Enabling Technologies, Protocols, and Applications.
IEEE Access. 2020;8:140699-140725. doi: 10.1109/access.2020.3013541. Epub 2020 Jul 31.
2
Federated Learning in Glaucoma: A Comprehensive Review and Future Perspectives.
Ophthalmol Glaucoma. 2025 Jan-Feb;8(1):92-105. doi: 10.1016/j.ogla.2024.08.004. Epub 2024 Aug 29.
3
Federated Learning in Edge Computing: A Systematic Survey.
Sensors (Basel). 2022 Jan 7;22(2):450. doi: 10.3390/s22020450.
4
The FeatureCloud Platform for Federated Learning in Biomedicine: Unified Approach.
J Med Internet Res. 2023 Jul 12;25:e42621. doi: 10.2196/42621.
5
Blockchain for federated learning toward secure distributed machine learning systems: a systemic survey.
Soft comput. 2022;26(9):4423-4440. doi: 10.1007/s00500-021-06496-5. Epub 2021 Nov 20.
7
Securing federated learning with blockchain: a systematic literature review.
Artif Intell Rev. 2023;56(5):3951-3985. doi: 10.1007/s10462-022-10271-9. Epub 2022 Sep 16.
8
Federated learning for 6G-enabled secure communication systems: a comprehensive survey.
Artif Intell Rev. 2023 Mar 12:1-93. doi: 10.1007/s10462-023-10417-3.
10
Privacy Enhancing and Scalable Federated Learning to Accelerate AI Implementation in Cross-Silo and IoMT Environments.
IEEE J Biomed Health Inform. 2023 Feb;27(2):744-755. doi: 10.1109/JBHI.2022.3185418. Epub 2023 Feb 3.

引用本文的文献

1
FedNolowe: A normalized loss-based weighted aggregation strategy for robust federated learning in heterogeneous environments.
PLoS One. 2025 Aug 14;20(8):e0322766. doi: 10.1371/journal.pone.0322766. eCollection 2025.
2
Revolutionizing healthcare data analytics with federated learning: A comprehensive survey of applications, systems, and future directions.
Comput Struct Biotechnol J. 2025 Jun 11;28:217-238. doi: 10.1016/j.csbj.2025.06.009. eCollection 2025.
3
Federated learning framework for IoT intrusion detection using tab transformer and nature-inspired hyperparameter optimization.
Front Big Data. 2025 May 14;8:1526480. doi: 10.3389/fdata.2025.1526480. eCollection 2025.
6
Federated Learning-Oriented Edge Computing Framework for the IIoT.
Sensors (Basel). 2024 Jun 27;24(13):4182. doi: 10.3390/s24134182.
7
Enhancing sports image data classification in federated learning through genetic algorithm-based optimization of base architecture.
PLoS One. 2024 Jul 11;19(7):e0303462. doi: 10.1371/journal.pone.0303462. eCollection 2024.
8
Orbital learning: a novel, actively orchestrated decentralised learning for healthcare.
Sci Rep. 2024 May 7;14(1):10459. doi: 10.1038/s41598-024-60915-9.
9
Privacy preserved and decentralized thermal comfort prediction model for smart buildings using federated learning.
PeerJ Comput Sci. 2024 Feb 29;10:e1899. doi: 10.7717/peerj-cs.1899. eCollection 2024.
10
Smart home system using blockchain technology in green lighting environment in rural areas.
Heliyon. 2024 Feb 17;10(4):e26620. doi: 10.1016/j.heliyon.2024.e26620. eCollection 2024 Feb 29.

本文引用的文献

1
Facing small and biased data dilemma in drug discovery with enhanced federated learning approaches.
Sci China Life Sci. 2022 Mar;65(3):529-539. doi: 10.1007/s11427-021-1946-0. Epub 2021 Jul 26.
2
FL-QSAR: a federated learning-based QSAR prototype for collaborative drug discovery.
Bioinformatics. 2021 Apr 1;36(22-23):5492-5498. doi: 10.1093/bioinformatics/btaa1006.
3
The future of digital health with federated learning.
NPJ Digit Med. 2020 Sep 14;3:119. doi: 10.1038/s41746-020-00323-1. eCollection 2020.
4
Secure and Robust Machine Learning for Healthcare: A Survey.
IEEE Rev Biomed Eng. 2021;14:156-180. doi: 10.1109/RBME.2020.3013489. Epub 2021 Jan 22.
5
Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results.
Med Image Anal. 2020 Oct;65:101765. doi: 10.1016/j.media.2020.101765. Epub 2020 Jul 2.
6
Personalized Federated Learning for Intelligent IoT Applications: A Cloud-Edge based Framework.
IEEE Comput Graph Appl. 2020 May 8. doi: 10.1109/OJCS.2020.2993259.
7
Predicting Adverse Drug Reactions on Distributed Health Data using Federated Learning.
AMIA Annu Symp Proc. 2020 Mar 4;2019:313-322. eCollection 2019.
8
Ethics of Using and Sharing Clinical Imaging Data for Artificial Intelligence: A Proposed Framework.
Radiology. 2020 Jun;295(3):675-682. doi: 10.1148/radiol.2020192536. Epub 2020 Mar 24.
9
Recent Trends and Future Direction of Dental Research in the Digital Era.
Int J Environ Res Public Health. 2020 Mar 18;17(6):1987. doi: 10.3390/ijerph17061987.
10
Accounting for data variability in multi-institutional distributed deep learning for medical imaging.
J Am Med Inform Assoc. 2020 May 1;27(5):700-708. doi: 10.1093/jamia/ocaa017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验