Suppr超能文献

文本生成中的扩散模型:一项综述。

Diffusion models in text generation: a survey.

作者信息

Yi Qiuhua, Chen Xiangfan, Zhang Chenwei, Zhou Zehai, Zhu Linan, Kong Xiangjie

机构信息

College of Computer Science and Technology, Zhejiang University of Technology, HangZhou, China.

School of Faculty of Education, University of Hong Kong, Hong Kong, China.

出版信息

PeerJ Comput Sci. 2024 Feb 23;10:e1905. doi: 10.7717/peerj-cs.1905. eCollection 2024.

Abstract

Diffusion models are a kind of math-based model that were first applied to image generation. Recently, they have drawn wide interest in natural language generation (NLG), a sub-field of natural language processing (NLP), due to their capability to generate varied and high-quality text outputs. In this article, we conduct a comprehensive survey on the application of diffusion models in text generation. We divide text generation into three parts (conditional, unconstrained, and multi-mode text generation, respectively) and provide a detailed introduction. In addition, considering that autoregressive-based pre-training models (PLMs) have recently dominated text generation, we conduct a detailed comparison between diffusion models and PLMs in multiple dimensions, highlighting their respective advantages and limitations. We believe that integrating PLMs into diffusion is a valuable research avenue. We also discuss current challenges faced by diffusion models in text generation and propose potential future research directions, such as improving sampling speed to address scalability issues and exploring multi-modal text generation. By providing a comprehensive analysis and outlook, this survey will serve as a valuable reference for researchers and practitioners interested in utilizing diffusion models for text generation tasks.

摘要

扩散模型是一种基于数学的模型,最初应用于图像生成。最近,由于它们能够生成多样且高质量的文本输出,在自然语言处理(NLP)的子领域自然语言生成(NLG)中引起了广泛关注。在本文中,我们对扩散模型在文本生成中的应用进行了全面的调查。我们将文本生成分为三个部分(分别是条件文本生成、无约束文本生成和多模态文本生成)并进行详细介绍。此外,鉴于基于自回归的预训练模型(PLMs)最近在文本生成中占据主导地位,我们在多个维度上对扩散模型和PLMs进行了详细比较,突出了它们各自的优点和局限性。我们认为将PLMs集成到扩散模型中是一条有价值的研究途径。我们还讨论了扩散模型在文本生成中面临的当前挑战,并提出了潜在的未来研究方向,例如提高采样速度以解决可扩展性问题以及探索多模态文本生成。通过提供全面的分析和展望,本调查将为有兴趣将扩散模型用于文本生成任务的研究人员和从业人员提供有价值的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d9e/10909201/d73a620e961c/peerj-cs-10-1905-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验