Suppr超能文献

Ascle-A 是一个用于医疗文本生成的 Python 自然语言处理工具包:开发和评估研究。

Ascle-A Python Natural Language Processing Toolkit for Medical Text Generation: Development and Evaluation Study.

机构信息

Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore.

Department of Linguistics, Northwestern University, Evanston, IL, United States.

出版信息

J Med Internet Res. 2024 Oct 3;26:e60601. doi: 10.2196/60601.

Abstract

BACKGROUND

Medical texts present significant domain-specific challenges, and manually curating these texts is a time-consuming and labor-intensive process. To address this, natural language processing (NLP) algorithms have been developed to automate text processing. In the biomedical field, various toolkits for text processing exist, which have greatly improved the efficiency of handling unstructured text. However, these existing toolkits tend to emphasize different perspectives, and none of them offer generation capabilities, leaving a significant gap in the current offerings.

OBJECTIVE

This study aims to describe the development and preliminary evaluation of Ascle. Ascle is tailored for biomedical researchers and clinical staff with an easy-to-use, all-in-one solution that requires minimal programming expertise. For the first time, Ascle provides 4 advanced and challenging generative functions: question-answering, text summarization, text simplification, and machine translation. In addition, Ascle integrates 12 essential NLP functions, along with query and search capabilities for clinical databases.

METHODS

We fine-tuned 32 domain-specific language models and evaluated them thoroughly on 27 established benchmarks. In addition, for the question-answering task, we developed a retrieval-augmented generation (RAG) framework for large language models that incorporated a medical knowledge graph with ranking techniques to enhance the reliability of generated answers. Additionally, we conducted a physician validation to assess the quality of generated content beyond automated metrics.

RESULTS

The fine-tuned models and RAG framework consistently enhanced text generation tasks. For example, the fine-tuned models improved the machine translation task by 20.27 in terms of BLEU score. In the question-answering task, the RAG framework raised the ROUGE-L score by 18% over the vanilla models. Physician validation of generated answers showed high scores for readability (4.95/5) and relevancy (4.43/5), with a lower score for accuracy (3.90/5) and completeness (3.31/5).

CONCLUSIONS

This study introduces the development and evaluation of Ascle, a user-friendly NLP toolkit designed for medical text generation. All code is publicly available through the Ascle GitHub repository. All fine-tuned language models can be accessed through Hugging Face.

摘要

背景

医学文本具有显著的领域特定挑战,手动编辑这些文本是一项耗时且劳动密集型的工作。为了解决这个问题,自然语言处理(NLP)算法被开发出来以实现文本处理的自动化。在生物医学领域,存在各种文本处理工具包,它们极大地提高了处理非结构化文本的效率。然而,这些现有的工具包往往强调不同的视角,并且没有一个提供生成能力,这在当前的产品中留下了一个重大的空白。

目的

本研究旨在描述 Ascle 的开发和初步评估。Ascle 专为生物医学研究人员和临床人员设计,提供了一个易于使用的一体化解决方案,几乎不需要编程专业知识。首次提供了 4 种高级且具有挑战性的生成功能:问答、文本摘要、文本简化和机器翻译。此外,Ascle 集成了 12 种基本的 NLP 功能,以及针对临床数据库的查询和搜索功能。

方法

我们对 32 个领域特定的语言模型进行了微调,并在 27 个已建立的基准上进行了全面评估。此外,对于问答任务,我们为大型语言模型开发了一种基于检索的生成(RAG)框架,该框架结合了医疗知识图和排名技术,以提高生成答案的可靠性。此外,我们还进行了医师验证,以评估生成内容的质量,超越自动化指标。

结果

微调后的模型和 RAG 框架始终提高了文本生成任务的性能。例如,微调后的模型在机器翻译任务中提高了 20.27 的 BLEU 得分。在问答任务中,RAG 框架使香草模型的 ROUGE-L 得分提高了 18%。医师对生成答案的可读性(4.95/5)和相关性(4.43/5)评分较高,而准确性(3.90/5)和完整性(3.31/5)评分较低。

结论

本研究介绍了 Ascle 的开发和评估,这是一个为医学文本生成设计的用户友好的 NLP 工具包。所有代码都可通过 Ascle GitHub 存储库获得。所有微调后的语言模型都可以通过 Hugging Face 访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d90b/11487205/169258be2d77/jmir_v26i1e60601_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验