Suppr超能文献

基于方面的情感分析的深度学习综述

Deep learning for aspect-based sentiment analysis: a review.

作者信息

Zhu Linan, Xu Minhao, Bao Yinwei, Xu Yifei, Kong Xiangjie

机构信息

College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.

出版信息

PeerJ Comput Sci. 2022 Jul 19;8:e1044. doi: 10.7717/peerj-cs.1044. eCollection 2022.

Abstract

User-generated content on various Internet platforms is growing explosively, and contains valuable information that helps decision-making. However, extracting this information accurately is still a challenge since there are massive amounts of data. Thereinto, sentiment analysis solves this problem by identifying people's sentiments towards the opinion target. This article aims to provide an overview of deep learning for aspect-based sentiment analysis. Firstly, we give a brief introduction to the aspect-based sentiment analysis (ABSA) task. Then, we present the overall framework of the ABSA task from two different perspectives: significant subtasks and the task modeling process. Finally, challenges are proposed and summarized in the field of sentiment analysis, especially in the domain of aspect-based sentiment analysis. In addition, ABSA task also takes the relations between various objects into consideration, which is rarely discussed in the previous work.

摘要

各种互联网平台上的用户生成内容正在呈爆炸式增长,并且包含有助于决策的有价值信息。然而,由于存在海量数据,准确提取这些信息仍然是一项挑战。其中,情感分析通过识别人们对观点目标的情感来解决这个问题。本文旨在概述基于方面的情感分析的深度学习。首先,我们简要介绍基于方面的情感分析(ABSA)任务。然后,我们从两个不同的角度呈现ABSA任务的整体框架:重要子任务和任务建模过程。最后,提出并总结了情感分析领域,特别是基于方面的情感分析领域中的挑战。此外,ABSA任务还考虑了各种对象之间的关系,这在以前的工作中很少被讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6691/9454971/e374c5b93f79/peerj-cs-08-1044-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验